Skip to main content
Log in

Dynamics of GDOES-induced surface roughening in metal interfaces

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The roughness induced during glow-discharge optical-emission spectroscopy (GDOES) measurements has been reported to cause a loss of resolution during GDOES depth-profiling analysis. In this paper, we undertake for the first time a study of the dynamics of the surface morphology of chromium and titanium thin films (designed in mono and multilayer structures) under the impinging of GDOES incoming ions. We performed this study under the theoretical framework of the dynamic scaling theory, by analysing surface morphology changes, as measured ex-situ by AFM, with irradiation time. For single metal layers it was found that, after an initial surface smoothening, the surface undergoes a rapid steep roughening for both systems, with quite similar quantitative dynamics. Once this roughening ends a second temporal scaling regime arises, operating for long length scales with dynamics depending on the sputtering rate of the material. For the chromium layer, with a very high sputtering rate of 5.5 μm min−1, this regime is consistent with the KPZ model, whereas for the titanium layer an EW scaling regime is indicated. These different scaling regimes are consistent with the development of larger surface slopes for the Cr system. In the multilayer systems, the initial roughness induced on the top Cr layer by GDOES has similar dynamics to that for single-layer Cr. However, a clear decrease in the roughness was observed once the underlying Ti layer, with a lower sputtering rate, was reached. This decrease in the induced roughness is maintained while the Ti layer is eroded. Therefore, choice of appropriate material (i.e. sputtering yield values) combinations and of their depth of location can enable tuning of GDOES-induced roughness and achieve substantial control over the depth profiling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Winchester MR, Payling R (2004) Radio-frequency glow discharge spectrometry: a critical review. Spectrochim Acta Part B 59:607–666

    Article  Google Scholar 

  2. Bings NH, Bogaerts A, Broekaert JAC (2008) Atomic spectroscopy. Anal Chem 80(12):4317–4347

    Article  CAS  Google Scholar 

  3. Bubert H, Grallath E, Quentmeier A, Wielunski M, Borucki L (1995) Comparative investigation on copper oxides by depth profiling using XPS, RBS and GDOES. Fresenius J Anal Chem 353:456–463

    Article  CAS  Google Scholar 

  4. Oswald S, Baunack S (2003) Comparison of depth profiling techniques using ion sputtering from the practical point of view. Thin Solid Films 425:9–19

    Article  CAS  Google Scholar 

  5. Thobor A, Rousselot C, Mikhailov S (2003) Depth profiles study of n(TiN + AlN) bilayers systems by GDOES and RBS techniques. Surf Coat Technol 174–175:351–359

    Article  Google Scholar 

  6. Escobar Galindo R, Gago R, Lousa A, Albella JM (2009) Comparative depth profiling analysis of nanometre metal multilayers by ion probing techniques. Trends Anal Chem 28(4):494–505

    Article  CAS  Google Scholar 

  7. Escobar Galindo RE, Gago R, Duday D, Palacio C (2010) Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES. Anal Bioanal Chem 396:2725–2740

    Article  CAS  Google Scholar 

  8. Klemm D, Hoffmann V, Wetzig K, Eckert J (2009) DC- and RF-GD-OES measurements of adsorbed organic monolayers on copper. Anal Bioanal Chem 395(6):1893–1900

    Article  CAS  Google Scholar 

  9. Beck U, Reiners G, Wirth T, Hoffmann V, Präßler F (1996) Multilayer reference coatings for depth profile standards. Thin Solid Films 290–291:57–62

    Article  Google Scholar 

  10. Shimizu K, Habazaki H, Skeldon P, Thompson GE (2003) Impact of RF-GDOES in practical surface analysis. Spectrochim Acta Part B 58:1573–1583

    Article  Google Scholar 

  11. Shimizu K, Habazaki H, Skeldon P, Thompson GE (2003) Radiofrequency GDOES: a powerful technique for depth profiling analysis of thin films. Surf Interface Anal 35:564–574

    Article  CAS  Google Scholar 

  12. Pisonero J, Fernández B, Pereiro R, Bordel N, Sanz-Medel A (2006) Glow discharge spectrometry for direct analysis of thin and ultra-thin solid films. Trends Anal Chem 25:11–18

    Article  CAS  Google Scholar 

  13. Escobar Galindo R, Forniés E, Gago R, Albella JM (2006) Nanometric resolution in glow discharge optical emission spectroscopy and Rutherford backscattering spectrometry depth profiling of metal (Cr, Al) nitride multilayers. Spectrochim Acta Part B 61(5):545–553

    Article  Google Scholar 

  14. Quentmeier A (1997) Sections 7.1 and 7.2. In: Payling R, Jones DG, Bengston A (eds) Glow discharge optical emission spectroscopy. Wiley, New York

    Google Scholar 

  15. Shimizu K, Habazaki H, Skeldon P, Thompson GE, Marcus RK (2001) Influence of interfacial depth on depth resolution during GDOES depth profiling analysis of thin alumina films. Surf Interface Anal 31:869–873

    Article  CAS  Google Scholar 

  16. Angeli J, Bengston A, Bogaerts A, Hoffmann V, Hodoroaba V, Steers E (2003) Glow discharge optical emission spectrometry: moving towards reliable thin film analysis: a short review. J Anal At Spectrom 18:670–679

    Article  CAS  Google Scholar 

  17. Hoffmann V, Dorka R, Wilken L, Hodoroaba VD, Wetzig K (2003) Present possibilities of thin-layer analysis by GDOES. Surf Interface Anal 35(7):575–582

    Article  CAS  Google Scholar 

  18. Escobar Galindo R, Forniés E, Albella JM (2005) Interfacial effects during the analysis of multilayer metal coatings by radiofrequency glow discharge optical emission spectroscopy: Part 2. Evaluation of depth resolution function and application to thin multilayer coatings. J Anal At Spectrom 20:1116–1120

    Article  CAS  Google Scholar 

  19. Daughtrey EH Jr, Donohue DL, Slevin PJ, Harrison WW (1975) Surface sputter effects in a hollow cathode discharge. Anal Chem 47:683–688

    Article  CAS  Google Scholar 

  20. Bruhn CG, Harrison WW (1978) Sputter-Atomization Studies with a Glow Discharge. Anal Chem 50:16–21

    Article  Google Scholar 

  21. Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (1999) Glow discharge optical emission spectrometry (GDOES) depth profiling analysis of anodic alumina films: a depth resolution study. Surf Interface Anal 27:24–28

    Article  CAS  Google Scholar 

  22. Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (1999) Impurity distributions in barrier anodic films on aluminium: a GDOES depth profiling study. Electrochim Acta 44:2297–2306

    Article  CAS  Google Scholar 

  23. Escobar Galindo R, Forniés E, Albella JM (2005) Interfacial effects during the analysis of multilayer metal coatings by radio-frequency glow discharge optical emission spectroscopy: Part 1. Crater shape and sputtering rate effects. J Anal At Spectrom 20:1108–1115

    Article  CAS  Google Scholar 

  24. Oswald S, Hoffmann V, Ehrlich G (1994) Contributions to computer-aided interpretation of ion sputtering depth profiling. Spectrochim Acta Part B 49:1123–1145

    Article  Google Scholar 

  25. Präßler F, Hoffmann V, Schumann J, Wetzig K (1996) Quantitative depth profiling in glow discharge spectroscopies: a new deconvolution technique to separate effects of an uneven erosion crater shape. Fresenius J Anal Chem 355:840–846

    Google Scholar 

  26. Escobar Galindo R, Albella JM (2008) Modelling of glow discharge optical emission spectroscopy depth profiles of metal (Cr, Ti) multilayer coatings. Spectrochim Acta Part B 63(3):422–430

    Article  Google Scholar 

  27. Malherbe J, Martinez H, Fernández B (2010) Donard OFX (2010) Investigation of glow-discharge-induced morphology modifications on silicon wafers and chromium conversion coatings by AFM and rugosimetry. Anal Bioanal Chem 396:2841–2853

    Article  CAS  Google Scholar 

  28. Trigoulet N, Hashimoto T, Molchan IS, Skeldon P, Thompson GE, Tempez A, Chapon P (2010) Surface topography effects on glow discharge depth profiling analysis. Surf Interface Anal 42:328–333

    Article  CAS  Google Scholar 

  29. Barabási AL, Syanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, Cambridge

    Google Scholar 

  31. Auger MA, Gago R, Fernández M, Sánchez O, Albella JM (2002) Deposition of TiN/AlN bilayers on a rotating substrate by reactive sputtering. Surf Coat Technol 157:26–33

    Article  CAS  Google Scholar 

  32. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis, Cent Eur J Phys 10(1): 181–188 (http://gwyddion.net/)

  33. Cuerno R, Vázquez L (2004) Advances in Condensed Matter and Statistical Physics. Nova Science, New York

    Google Scholar 

  34. Family F, Vicsek T (1985) Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J Phys A 18:L75–L81

    Article  Google Scholar 

  35. Makeev MA, Cuerno R, Barabási AL (2002) Morphology of ion-sputtered surfaces. Nucl Inst Methods Phys Res B 197:185–227

    Article  CAS  Google Scholar 

  36. Bradley RM, Harper JME (1988) Theory of Ripple Topography Induced by Ion Bombardment. J Vac Sci Technol A 6:2390

    Article  CAS  Google Scholar 

  37. Edwards SF, Wilkinson DR (1982) The Surface Statistics of a Granular Aggregate. Proc R Soc Lond 381:17–31

    Article  Google Scholar 

  38. Kardar M, Parisi G, Zhang YC (1986) Dynamic scaling of growing interfaces. Phys Rev Lett 56:889–892

    Article  CAS  Google Scholar 

  39. Nicoli M, Cuerno R, Castro M (2013) Dimensional fragility of the Kardar-Parisi-Zhang universality class, J Stat Mech: Theory Exp, P11001 (11 pages)

  40. Cuerno R, Barabási AL (1995) Dynamic Scaling of Ion-Sputtered Surfaces. Phys Rev Lett 74:4746–4749

    Article  CAS  Google Scholar 

  41. Sigmund P (1969) Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets. Phys Rev 184:383–416

    Article  CAS  Google Scholar 

  42. Castro M, Cuerno R, Vázquez L, Gago R (2005) Self-Organized Ordering of Nanostructures Produced by Ion-Beam Sputtering. Phys Rev Lett 94:016102

    Article  Google Scholar 

  43. Muñoz-García J, Cuerno R, Castro M (2009) Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets. J Phys Condens Matter 21:224020

    Article  Google Scholar 

  44. Auger MA, Vázquez L, Cuerno R, Castro M, Jergel M, Sánchez O (2006) Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering. Phys Rev B 73:045436

    Article  Google Scholar 

  45. López JM, Castro M, Gallego R (2005) Scaling of local slopes, conservation laws and anomalous roughening in surface growth. Phys Rev Lett 94:166103

    Article  Google Scholar 

  46. Hofman S (1998) Sputter depth profile analysis of interfaces. Rep Prog Phys 61:827–888

    Article  Google Scholar 

  47. Wöhner T, Ecke G, Rössler HS (1998) Sputtering-induced Surface Roughness of Polycrystalline Al Films and its Influence on AES Depth Profiles, Surf Interf. Anal 26:1–8

    Google Scholar 

  48. Marton D, Fine J (1987) On the development of increasing surface roughness. Thin Solid Films 151:433–439

    Article  CAS  Google Scholar 

  49. Marton D, Fine J (1990) Sputtering-induced surface roughness of metallic thin films during ion sputtering. Thin Solid Films 185:79–90

    Article  CAS  Google Scholar 

  50. Vázquez L, Salvarezza R, Herrasti P, Ocon P, Vara JM, Arvia AJ (1995) Dynamic-scaling exponents and the roughening kinetics of gold electrodeposits. Phys Rev E 52:2032–2037

    Article  Google Scholar 

  51. Vázquez L, Salvarezza R, Herrasti P, Ocon P, Vara JM, Arvia AJ (1996) Scale-dependent roughening kinetics in vapor deposited gold. Surf Sci 345:17–26

    Article  Google Scholar 

  52. Nicoli M, Vivo E, Cuerno R (2010) Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation, Phys Rev E 82: 045202(R)

Download references

Acknowledgments

The authors thank R. Cuerno for fruitful discussions. This work has been partially supported by Ministerio de Economía y Competitividad (projects FIS2012-38866-C05-05, CSD2008-00023 and RyC2007-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Escobar Galindo.

Additional information

Published in the topical collection Emerging Concepts and Strategies in Analytical Glow Discharges with guest editors Rosario Pereiro and Steven Ray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar Galindo, R., Vázquez, L. Dynamics of GDOES-induced surface roughening in metal interfaces. Anal Bioanal Chem 406, 7483–7495 (2014). https://doi.org/10.1007/s00216-014-7827-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7827-3

Keywords

Navigation