Skip to main content
Log in

DC- and RF-GD-OES measurements of adsorbed organic monolayers on copper

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Our direct current (DC)- and radiofrequency glow discharge optical emission spectroscopy (RF-GD-OES) measurements of adsorbed organic monolayers were inspired by the work of Shimizu et al., who presented the first example of depth profile analysis of an adsorbed monolayer by RF-GD-OES in 2004. The great potential of RF-GD-OES for analyses of layers with thicknesses in the subnanometer range was surprising. Shimizu et al. discussed not only the qualitative detection of atoms of the organic monolayer (C, H, N, S), but also the determination of the different orientation of the molecules relative to the surface due to a significant peak sequence. This latter assumption was questioned in the analytical community. We intend to demonstrate the potential of the GD-OES technique for surface analysis in terms of reliability and reproducibility by using an advanced vacuum instrumentation and presputtering with silicon. It will be shown that comparable measurements can be reproduced not only with RF-GD-OES but, above all, also with DC-GD-OES. The experimental steps to adsorb thiourea molecules on a copper substrate are described in detail. Further experiments with other organic molecules, e.g. benzotriazole (BTA) or benzothiazole (BTH), disprove the predicted correlation between the orientation of the molecules relative to the surface and the occurrence of peak separation. Ultimately, a quantification of compounds of the organic monolayer in the case of adsorbed thiourea is achieved.

DC-GD-OES surface depth profiles of an adsorbed monolayer of thiourea

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bengtson A (1994) Spectrochim Acta Part B 49:411–429. doi:10.1016/0584-8547(94)80034-0

    Article  Google Scholar 

  2. Angeli J, Bengtson A, Bogaerts A, Hoffmann V, Hodoroaba V-D, Steers EBM (2003) J Anal At Spectrom 18:670–679. doi:10.1039/b301293j

    Article  CAS  Google Scholar 

  3. Evans EH, Chenery S, Fisher A, Marshall J, Sutton K (1999) J Anal At Spectrom 14:977–1004. doi:10.1039/a902328c

    Article  CAS  Google Scholar 

  4. Shimizu K, Habazaki H, Skeldon P, Thompson GE (2003) Surf Interface Anal 35:564–574

    Article  CAS  Google Scholar 

  5. Shimizu K, Habazaki H, Skeldon P, Thompson GE (2003) Spectrochim Acta Part B 58:1573–1583

    Article  Google Scholar 

  6. Shimizu K, Payling R, Habazaki H, Skeldon P, Thompson GE (2004) J Anal At Spectrom 19:692–695

    Article  CAS  Google Scholar 

  7. Grimm W (1968) Spectrochim Acta Part B 23:443–454. doi:10.1016/0584-8547(68)80023-0

    Article  CAS  Google Scholar 

  8. Klemm D, Stangl M, Peeva A, Hoffmann V, Wetzig K, Eckert J (2008) Surf Interface Anal 40:418–422. doi:10.1002/sia.2743

    Article  CAS  Google Scholar 

  9. Klemm D, Hoffmann V, Edelmann C (2008) Vak Forsch Prax 20:30–35. doi:10.1002/vipr.200800357

    Article  CAS  Google Scholar 

  10. Inayoshi SS, Tsukahara S, Kinbara A (1999) Vacuum 53:281–284

    Article  CAS  Google Scholar 

  11. Hoffmann V, Uhlemann H-J, Präßler F, Wetzig K, Birus D (1996) Fresenius J Anal Chem 355:826–830

    CAS  Google Scholar 

  12. Wilken L, Hoffmann V, Wetzig K (2007) Spectrochim Acta Part B 62:1085–1122. doi:10.1016/j.sab.2007.07.003

    Article  Google Scholar 

  13. Ke B, Hoekstra JJ, Sison J, Trivich D (1959) J Electrochem Soc 106:382–388

    Article  CAS  Google Scholar 

  14. Loo BH (1982) Chem Phys Lett 89:346–350

    Article  CAS  Google Scholar 

  15. Popova A (2007) Corros Sci 49:2144–2158

    Article  CAS  Google Scholar 

  16. Tornkvist C, Thierry D, Bergman J, Liedberg B, Leygraf C (1989) J Electrochem Soc 136:58–64

    Article  Google Scholar 

  17. Morito M, Swetaka W (1971) J Jpn Inst Metals 35:1165–1170

    CAS  Google Scholar 

  18. Cohen SL, Brusic VA, Kaufman FB, Frankel GS, Motakef S, Rush B (1990) J Vac Sci Technol A: Vac Surf Films 8:2417–2424

    Article  CAS  Google Scholar 

  19. Popova A, Christov M, Zwetanova A (2007) Corros Sci 49:2131–2143

    Article  CAS  Google Scholar 

  20. Laibinis PE, Whitesides GM (1992) J Am Chem Soc 114:9022–9028

    Article  CAS  Google Scholar 

  21. Tabulated enthalpy and binding energy (2008) http://de.wikibooks.org/wiki/Tabellensammlung_Chemie:_Enthalpie_und_Bindungsenergie. Accessed 14 Apr 2008

  22. Lide DR (1990) CRC handbook of chemistry and physics. CRC, Boca Raton

    Google Scholar 

  23. Lobo L, Fernández B, Pereiro R, Bordel N, Sanz-Medel A (2007) Anal Bioanal Chem 389:743–752. doi:10.1007/s00216-007-1377-x

    Article  CAS  Google Scholar 

  24. Smid P, Steers EBM, Weiss Z, Pickering J, Hoffmann V (2008) J Anal At Spectrom 23:1223–1233. doi:10.1039/b803812k

    Article  CAS  Google Scholar 

  25. Bengtson A (2008) Spectrochim Acta Part B: Atom Spectrosc 63:917–928. doi:10.1016/j.sab.2008.05.005

    Article  Google Scholar 

  26. WebElements (2008) http://www.webelements.com/copper/crystal_structure.html. Accessed 5 Dec 2008

  27. Fleischmann M, Hill IR, Sundholm G (1983) J Electroanal Chem 157:359–368

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Kenichi Shimizu for inspiring discussions about the challenges and limits of thin-film analysis. This work was supported by Spectruma Analytik GmbH (Hof, Germany). Furthermore, the authors thank Rainer Kaltofen (IFW Dresden) for deposition of the copper layers by magnetron sputtering and Andrea Voß and Ronny Buckan for supporting with the chemicals. The financial support by the German Federation of Industrial Research Association (AiF—Project BR03152/04) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Klemm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemm, D., Hoffmann, V., Wetzig, K. et al. DC- and RF-GD-OES measurements of adsorbed organic monolayers on copper. Anal Bioanal Chem 395, 1893–1900 (2009). https://doi.org/10.1007/s00216-009-2966-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2966-7

Keywords

Navigation