Skip to main content
Log in

Combination of preparative HPLC and HSCCC methods to separate phosphodiesterase inhibitors from Eucommia ulmoides bark guided by ultrafiltration-based ligand screening

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Phosphodiesterase (PDE) inhibitors are widely used because of their various pharmacological properties, and natural products are considered the most productive source of PDE inhibitors. In this work, a new ultrafiltration–high-performance liquid chromatography (HPLC)–diode-array detection–mass spectrometry based ligand screening was developed for the first screening of PDE inhibitors from Eucommia ulmoides bark, and then the target bioactive compounds were prepared by combination of stepwise preparative HPLC and high-speed countercurrent chromatography (HSCCC) methods. Experiments were conducted to optimize the parameters in ultrafiltration, stepwise preparative HPLC, and HSCCC to allow rapid and effective screening and isolation of active compounds from complex mixtures. Seven lignans with purity over 97 % were isolated and identified by their UV, electrospray ionization mass spectrometry, and NMR data as (+)-pinoresinol-4,4′-di-O-β-D-glucopyranoside (1), (+)-pinoresinol-4-O-β-D-glucopyranosyl(1 → 6)-β-D-glucopyranoside (2), (+)-medioresinol-4,4′-di-O-β-D-glucopyranoside (3), (+)-syringaresinol-4,4′-di-O- β-D-glucopyranoside (4), (−)-olivil-4′-O-β-D-glucopyranoside (5), (−)-olivil-4-O-β-D- glucopyranoside (6), and (+)-pinoresinol-4-O-β-D-glucopyranoside (7). Compound 2 was first isolated from the genus Eucommia. Lignan diglucopyranosides (compounds 1–4) shower a greater inhibitory effect than lignan monoglucopyranosides (compounds 5–7). The method developed could be widely applied for high-throughput screening and preparative isolation of PDE inhibitors from natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  Google Scholar 

  2. Wang X, Li KF, Adams E, Van Schepdael A (2011) Matrix metalloproteinase inhibitors: a review on bioanalytical methods, pharmacokinetics and metabolism. Curr Drug Metabol 12:395–410

    Article  CAS  Google Scholar 

  3. Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

    Article  CAS  Google Scholar 

  4. Schenk T, Breel GJ, Koevoets P, van den Berg S, Hogenboom AC, Irth H, Tjaden UR, van den Greef J (2003) Screening of natural products extracts for the presence of phosphodiesterase inhibitors using liquid chromatography coupled online to parallel biochemical detection and chemical characterization. J Biomol Screen 8:421–429

    Article  CAS  Google Scholar 

  5. Rahimi R, Ghiasi S, Azimi H, Fakhari S, Abdollahi M (2010) A review of the herbal phosphodiesterase inhibitors: future perspective of new drugs. Cytokine 49:123–129

    Article  CAS  Google Scholar 

  6. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  Google Scholar 

  7. Hong ND, Rho YS, Won DH, Kim NJ, Cho BS (1987) Studies on the anti-diabetic activity of Eucommia ulmoides Oliver. Korean J Pharmacog 18:112–117

    Google Scholar 

  8. Horii Y, Tanida M, Shen J, Hirata T, Kawamura N, Wada A, Nagai K (2010) Effects of Eucommia leaf extracts on autonomic nerves, body temperature, lipolysis, food intake, and body weight. Neurosci Lett 479:181–186

    Article  CAS  Google Scholar 

  9. Park SA, Choi MS, Jung UJ, Kim MJ, Kim DJ, Park HM, Park YB, Lee MK (2006) Eucommia ulmoides Oliver leaf extract increases endogenous antioxidant activity in type 2 diabetic mice. J Med Food 9:474–479

    Article  Google Scholar 

  10. National Commission of Chinese Pharmacopoeia (2010) Pharmacopoeia of the People's Republic of China, vol 1. China Medical Science and Technology Press, Beijing, P 154

    Google Scholar 

  11. Deyama T, Nishibe S, Nakazawa Y (2001) Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol Sin 22:1057–1070

    CAS  Google Scholar 

  12. Takamura C, Hirata T, Ueda T, Ono M, Miyashita H, Ikeda T, Nohara T (2007) Iridoids from the green leaves of Eucommia ulmoides. J Nat Prod 70:1312–1316

    Article  CAS  Google Scholar 

  13. Takamura C, Hirata T, Yamaguchi Y, Ono M, Miyashita H, Ikeda T, Nohara T (2007) Studies on the chemical constituents of green leaves of Eucommia ulmoides Oliv. J Nat Med 61:220–221

    Article  CAS  Google Scholar 

  14. Luo LF, Wu WH, Zhou YJ, Yan J, Yang GP, Ouyang DS (2010) Antihypertensive effect of Eucommia ulmoides Oliv extracts in spontanesously hypertensive rats. J Ethnopharmacol 129:238–243

    Article  Google Scholar 

  15. Sha ZF, Sun WJ (1986) High performance liquid chromatography of pinoresinol diglucoside in Eucommia ulmoides Oliv bark. Acta Pharmaceut Sin 21:708–711

    CAS  Google Scholar 

  16. Li L, Yan J, Hu K, Gu J, Wang JJ, Deng XL, Li H, Jing X, Li ZY, Ye QF, Ouyang DS (2012) Protective effect of Eucommia lignans against hypertensive renal injury by inhibiting expression of aldose reductase. J Ethnopharmacol 139:454–461

    Article  Google Scholar 

  17. Gu J, Wang JJ, Yan J, Cui CF, Wu WH, Li L, Wang ZS, Yu M, Gao N, Liu L, Ouyang DS (2011) Effect of lignans extracted from Eucommia ulmoides and aldose reductase inhibitor epalrestat on hypertensive vascular remodeling. J Ethnopharmacol 133:6–13

    Article  CAS  Google Scholar 

  18. Deyama T, Nishibe S, Kitagawa S, Ogihara Y, Takeda T, Ohmoto T, Nikaido T, Sankawa U (1988) Inhibition of adenosine 3',5'-cyclic monophosphate phosphodiesterase by lignin glucosides of Eucommia bark. Chem Pharm Bull 36:435–439

    Article  CAS  Google Scholar 

  19. Wen XD, Qi LW, Chen J, Song Y, Yi L, Yang XW, Li P (2007) Analysis of interaction property of bioactive components in Danggui Buxue decoction with protein by microdialysis coupled with HPLC-DAD-MS. J Chromatogr B 852:598–604

    Article  CAS  Google Scholar 

  20. Ye G, Li YZ, Li YY, Guo HZ, Guo DA (2003) SPE-HPLC method for the determination and pharmacokinetic studies on pqeoniflorin in rat serum after oral administration of traditional Chinese medicinal preparation Guan-Xin-Er-Hao decoction. J Pharm Biomed Anal 33:521–527

    Article  CAS  Google Scholar 

  21. Robards K (2003) Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J Chrom A 1000:657–691

    Article  CAS  Google Scholar 

  22. Shi SY, Zhou HH, Zhang YP, Jiang XY, Chen XQ, Huang KL (2009) Coupling HPLC to on-line, post-column (bio)chemical assays for high-resolution screening of bioactive compounds from complex mixtures. Trends Anal Chem 28:865–877

    Article  CAS  Google Scholar 

  23. Roldán C, de la Torre A, Mota S, Morales-Soto A, Menédez J, Segura-Carretero A (2013) Identification of active compounds in vegetal extracts based on correlation between activity and HPLC-MS data. Food Chem 136:392–399

    Article  Google Scholar 

  24. Li YJ, Chen J, Li Y, Li Q, Zheng YF, Fu Y, Li P (2011) Screening and characterization of natural antioxidants in four Glycyrrhiza species by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Chrom A 1218:8181–8191

    Article  CAS  Google Scholar 

  25. Dapkevicius A, van Beek TA, Niederländer HAG (2011) Evaluation and comparison of two improved techniques for the on-line detection of antioxidants in liquid chromatography eluates. J Chrom A 912:73–82

    Google Scholar 

  26. Zhang YP, Shi SY, Xiong X, Chen XQ, Peng MJ (2012) Comparative evaluation of three methods based on high-performance liquid chromatography analysis combined with a 2,2'-diphenyl-1-picrylhydrazyl assay for the rapid screening of antioxidants from Pueraria lobata flowers. Anal Bioanal Chem 402:2965–2976

    Article  CAS  Google Scholar 

  27. Kunihiro K (2011) Simplified extraction of tetracycline antibiotics from milk using a centrifugal ultrafiltration device. Food Chem 126:687–690

    Article  Google Scholar 

  28. Yang ZZ, Zhang YF, Sun LJ, Wang Y, Gao XM, Cheng YY (2012) An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterizing tyrosinase inhibitors from mulberry leaves. Anal Chim Acta 719:87–95

    Article  CAS  Google Scholar 

  29. Qian ZM, Qin SJ, Li P, Li HJ, Li P, Wen XD (2008) Binding study of Flos Lonicerae Japonicae with bovine serum albumin using centrifugal ultrafiltration and liquid chromatography. Biomed Chromatogr 22:202–206

    Article  CAS  Google Scholar 

  30. Chen XP, Xia YQ, Lu Y, Liang JY (2011) Screening of permeable compounds in Flos Lonicerae Japonicae with liposome using filtration and HPLC. J Pharm Biomed Anal 54:406–410

    Article  CAS  Google Scholar 

  31. Luo YD, Wu SS, Li XY, Li P (2010) LC-ESI-MS-MS determination of rat plasma protein binding of major flavonoids of Flos Lonicerae Japonicae by centrifugal ultrafiltration. Chromatographia 72:71–77

    Article  CAS  Google Scholar 

  32. Zhang YP, Peng MJ, Liu LL, Shi SY, Peng S (2012) Screening, identification and potential interaction of active compounds from Eucommia ulmodies leaves binding with bovine serum albumin. J Agric Food Chem 60:3119–3125

    Article  CAS  Google Scholar 

  33. Lo TC, Nian HC, Chiu KH, Wang AY, Wu BZ (2012) Rapid and efficient purification of chrysophanol in Rheum Palmatum LINN by supercritical fluid extraction coupled with preparative liquid chromatography in tandem. J Chromatogr B 893–894:101–106

    Article  Google Scholar 

  34. Ito Y (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J Chrom A 1065:145–168

    Article  CAS  Google Scholar 

  35. Shi SY, Ma YJ, Zhang YP, Liu LL, Liu Q, Peng MJ, Xiong X (2012) Systematic separation and purification of 18 antioxidants from Pueraria lobata flower using HSCCC target-guided by DPPH-HPLC experiment. Sep Purif Technol 89:225–233

    Article  CAS  Google Scholar 

  36. Schroder M, Vetter W (2011) High-speed counter-current chromatographic separation of phytosterols. Anal Bioanal Chem 400:3615–3623

    Article  Google Scholar 

  37. Yoon KD, Chin YW, Yang MH, Kim J (2011) Separation of anti-ulcer flavonoids from Artemisia extracts by high-speed countercurrent chromatography. Food Chem 129:679–683

    Article  CAS  Google Scholar 

  38. DeAmicis C, Edwards NA, Giles MB, Harris GH, Hewitson P, Janaway L, Ignatova S (2011) Comparison of preparative reversed phased liquid chromatography and countercurrent chromatography for the kilogram scale purification of crude spinetoram insecticide. J Chrom A 1218:6122–6127

    Article  CAS  Google Scholar 

  39. Yamazaki T, Anraku T, Matsuzawa S (2011) Ibudilast, a mixed PDE3/4 inhibitor, causes a selective and nitric oxide/cGMP-independent relaxation of the intracranial verbrobasilar artery. Eur J Pharmacol 650:605–611

    Article  CAS  Google Scholar 

  40. Kebarle P, Verkerk UH (2009) Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrum Rev 28:898–917

    Article  CAS  Google Scholar 

  41. Sun L, Li HK, Willson K, Breidinger S, Rizk ML, Wenning L, Woolf EJ (2012) Ultrasensitive liquid chromatography-tandem mass spectrometric methodologies for quantification of five HIV-1 integrase inhibitors in plasma for a microdose clinical trial. Anal Chem 84:8614–8621

    Article  CAS  Google Scholar 

  42. Noguchi S, Shimura G, Kimura K, Samejima H (1976) Production of 5'-mononucleotides using immobilized 5'-phosphodiesterase and 5'-AMP deaminase. Appl Biochem Biotechnol 2:105–118

    Google Scholar 

  43. Abe F, Yamauchi T, Wan ASC (1988) Lignans related to olivil from Cerbera (Cerbera. VI). Chem Pharm Bull 36:795–799

    Article  CAS  Google Scholar 

  44. Deyama T (1983) The constituents of Eucommia ulmoides Oliv. I. Isolation of (+)-medioresinol di-O-β-D-glucopyranoside. Chem Pharm Bull 31:2993–2997

    Article  CAS  Google Scholar 

  45. Katsuzaki H, Osawa T, Kawakishi S (1994) Chemistry and antioxidative activity of lignan glucosides in sesame seed. In: Ho C-T, Osawa T, Huang M-T, Rosen RT (eds) Food phytochemicals for cancer prevention II. American Chemical Society, Washington, pp 275–280

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21275163, 21005089), the Science and Technology Program of Hunan Province, China (2012FJ2006), the Freedom Explore Program of Central South University (201012200015), the Shenghua Yuying project of Central South University, the Open Fund of the Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, and the Aid Program for Science and Technology Innovative Research Team (Chemicals of Forestry Resources and Development of Forest Products) in Higher Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Yun Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, SY., Peng, MJ., Zhang, YP. et al. Combination of preparative HPLC and HSCCC methods to separate phosphodiesterase inhibitors from Eucommia ulmoides bark guided by ultrafiltration-based ligand screening. Anal Bioanal Chem 405, 4213–4223 (2013). https://doi.org/10.1007/s00216-013-6806-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6806-4

Keywords

Navigation