Skip to main content
Log in

New luminescent oxygen-sensing and temperature-sensing materials based on gadolinium(III) and europium(III) complexes embedded in an acridone–polystyrene conjugate

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

New sensing materials have been developed which rely on the use of luminescent europium(III) and gadolinium(III) complexes with thenoylacetylacetonate embedded in an acridone–polystyrene conjugate. Acridone acts as an antenna which efficiently absorbs violet light. Covalent coupling to the polystyrene backbone prevents aggregation and enables very high antenna loading (16 % w/w). Energy transfer from the antenna to the lanthanide complexes results in efficient red luminescence from the Eu(III) complex or green phosphorescence originating from the Gd(III) chelate. The luminescence of the material based on the Eu(III) complex is only slightly affected by oxygen but is highly sensitive to temperature under physiological conditions (20–40 °C). The Gd(III) complex has long phosphorescence decay times of approximately 1 ms and high sensitivity to oxygen. Ultra-thin (250 nm) sensing layers with sufficient absorption at the excitation wavelength enable monitoring of rapid oxygen changes virtually in real time. Immobilization of both complexes in a single matrix results in a dual-luminescence material with emissions almost ideally matching the red and green channels of a digital camera. Thus, oxygen imaging using a very simple and inexpensive set-up can be realized. Additionally, the material can be used for simultaneous sensing of oxygen and temperature.

Phosphorescent oxygen-sensing material based on a gadolinium(III) complex

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bünzli J-CG (2010) Chem Rev 110:2729–2755

    Article  Google Scholar 

  2. Yuan J, Wang G (2005) J Fluoresc 15:559–568

    Article  CAS  Google Scholar 

  3. Chen Y, Lu Z (2007) Anal Chim Acta 587:180–186

    Article  CAS  Google Scholar 

  4. Nishioka T, Yuan J, Yamamoto Y, Sumitomo K, Wang Z, Hashino K, Hosoya C, Ikawa K, Wang G, Matsumoto K (2006) Inorg Chem 45:4088–4096

    Article  CAS  Google Scholar 

  5. Soukka T, Paukkunen J, Harma H, Lonnberg S, Lindroos H, Lovgren T (2001) Clin Chem 47:1269–1278

    CAS  Google Scholar 

  6. Jiang H, Wang G, Zhang W, Liu X, Ye Z, Jin D, Yuan J, Liu Z (2010) J Fluoresc 20:321–328

    Article  Google Scholar 

  7. Tan M, Ye Z, Wang G, Yuan J (2004) Chem Mater 16:2494–2498

    Article  CAS  Google Scholar 

  8. Kokko L, Sandberg K, Lövgren T, Soukka T (2004) Anal Chim Acta 503:155–162

    Article  CAS  Google Scholar 

  9. Xu Y, Li Q (2007) Clin Chem 53:1503–1510

    Article  CAS  Google Scholar 

  10. Wu J, Ye Z, Wang G, Yuan J (2007) Talanta 72:1693–1697

    Article  CAS  Google Scholar 

  11. Kokko L, Lövgren T, Soukka T (2007) Anal Chim Acta 585:17–23

    Article  CAS  Google Scholar 

  12. Wu J, Wang G, Jin D, Yuan J, Guan Y, Piper J (2008) Chem Commun 365–367

  13. Hemmila I, Laitala V (2005) J Fluoresc 15:529–542

    Article  CAS  Google Scholar 

  14. Mitsuishi M, Kikuchi S, Miyashita T, Amao Y (2003) J Mater Chem 13:2875–2879

    Article  CAS  Google Scholar 

  15. Zelelow B, Khalil GE, Phelan G, Carlson B, Gouterman M, Callis JB, Dalton LR (2003) Sens Actuators B 96:304–314

    Article  Google Scholar 

  16. Borisov SM, Wolfbeis OS (2006) Anal Chem 78:5094–5101

    Article  CAS  Google Scholar 

  17. Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M (2008) Adv Funct Mater 18:1399–1406

    Article  CAS  Google Scholar 

  18. Stich MIJ, Schaeferling M, Wolfbeis OS (2009) Adv Mater 21:2216–2220

    Article  CAS  Google Scholar 

  19. Borisov S, Klimant I (2008) J Fluoresc 18:581–589

    Article  CAS  Google Scholar 

  20. Amao Y, Okura I, Miyashita T (2000) Chem Lett 934–935

  21. Amao Y, Okura I, Miyashita T (2000) Bull Chem Soc Jpn 73:2663–2668

    Article  CAS  Google Scholar 

  22. Pal R, Parker D (2007) Chem Commun 474–476

  23. Hynes J, O’Riordan TC, Zhdanov AV, Uray G, Will Y, Papkovsky DB (2009) Anal Biochem 390:21–28

    Article  CAS  Google Scholar 

  24. Lobnik A, Majcen N, Niederreiter K, Uray G (2001) Sens Actuators B 74:200–206

    Article  Google Scholar 

  25. Wolfbeis OS, Dürkop A, Wu M, Lin Z (2002) Angew Chem Int Ed 41:4495–4498

    Article  CAS  Google Scholar 

  26. Yang C, Fu L-M, Wang Y, Zhang J-P, Wong W-T, Ai X-C, Qiao Y-F, Zou B-S, Gui L-L (2004) Angew Chem Int Ed 116:5120–5123

    Article  Google Scholar 

  27. Werts MHV, Duin MA, Hofstraat JW, Verhoeven JW (1999) Chem Commun 799–800

  28. Deiters E, Gumy F, Bünzli J-CG (2010) Eur J Inorg Chem 2010:2723–2734

    Article  Google Scholar 

  29. Dadabhoy A, Faulkner S, Sammes PG (2000) J Chem Soc Perkin Trans 2:2359–2360

    Google Scholar 

  30. Dadabhoy A, Faulkner S, Sammes PG (2002) J Chem Soc Perkin Trans 2:348–357

    Google Scholar 

  31. Bretonniere Y, Cann MJ, Parker D, Slater R (2004) Org Biomol Chem 2:1624–1632

    Article  CAS  Google Scholar 

  32. Imperio D, Giovenzana GB, Law G, Parker D, Walton JW (2010) Dalton Trans 39:9897–9903

    Article  CAS  Google Scholar 

  33. Parker D, Walton JW, Lamarque L, Zwier JM (2010) Eur J Inorg Chem 2010:3961–3966

    Article  Google Scholar 

  34. Kielar F, Congreve A, Law G, New EJ, Parker D, Wong K-L, Castreňo P, de Mendoza J (2008) Chem Commun 2435–2437

  35. Atkinson P, Findlay KS, Kielar F, Pal R, Parker D, Poole RA, Puschmann H, Richardson SL, Stenson PA, Thompson AL, Yu J (2006) Org Biomol Chem 4:1707–1722

    Article  CAS  Google Scholar 

  36. Parker D, Yu J (2005) Chem Commun 3141–3143

  37. Pålsson L-O, Pal R, Murray BS, Parker D, Beeby A (2007) Dalton Trans 5726–5734

  38. Deun RV, Nockemann P, Fias P, Hecke KV, Meervelt LV, Binnemans K (2005) Chem Commun 590–592

  39. Strasser A, Vogler A (2003) Chem Phys Lett 379:287–290

    Article  CAS  Google Scholar 

  40. Strasser A, Vogler A (2004) Inorg Chim Acta 357:2345–2348

    Article  CAS  Google Scholar 

  41. Raymond KN, Pierre VC (2005) Bioconj Chem 16:3–8

    Article  CAS  Google Scholar 

  42. Floyd WC, Klemm PJ, Smiles DE, Kohlgruber AC, Pierre VC, Mynar JL, Fréchet JMJ, Raymond KN (2011) J Am Chem Soc 133:2390–2393

    Article  CAS  Google Scholar 

  43. Malta OL, Brito HF, Menezes JFS (1998) Gonçalves e Silva FR, de Mello Donegá C, Alves Jr S. Chem Phys Lett 282:233–238

    Article  CAS  Google Scholar 

  44. Bhaumik ML (1964) J Chem Phys 40:3711–3715

    Article  CAS  Google Scholar 

  45. Brown R, Lahey F (1950) Aust J Chem 3:593–614

    Article  Google Scholar 

  46. Borisov SM, Gatterer K, Bitschnau B, Klimant I (2010) J Phys Chem C 114:9118–9124

    Article  CAS  Google Scholar 

  47. Borisov SM, Nuss G, Klimant I (2008) Anal Chem 80:9435–9442

    Article  CAS  Google Scholar 

  48. Borisov SM, Klimant I (2007) Anal Chem 79:7501–7509

    Article  CAS  Google Scholar 

  49. Stich MIJ, Borisov SM, Henne U, Schäferling M (2009) Sens Actuators B 139:204–207

    Article  Google Scholar 

  50. Wang X, Meier RJ, Link M, Wolfbeis OS (2010) Angew Chem Int Ed 49:4907–4909

    Article  CAS  Google Scholar 

  51. Larsen M, Borisov SM, Grunwald B, Klimant I, Glud RN (2011) Limnol Oceanogr: Methods 9:348–360

    Article  CAS  Google Scholar 

  52. Wang X, Zhou T, Song X, Jiang Y, Yang CJ, Chen X (2011) J Mater Chem 21:17651–17653

    Article  CAS  Google Scholar 

  53. Nagl S, Wolfbeis OS (2007) Analyst 132:507–511

    Article  CAS  Google Scholar 

  54. Stich MIJ, Fischer LH, Wolfbeis OS (2010) Chem Soc Rev 39:3102–3114

    Article  CAS  Google Scholar 

  55. Hradil J, Davis C, Mongey K, McDonagh C, MacCraith BD (2002) Meas Sci Technol 13:1552–1557

    Article  CAS  Google Scholar 

  56. Borisov SM, Vasylevska AS, Krause C, Wolfbeis OS (2006) Adv Funct Mater 16:1536–1542

    Article  CAS  Google Scholar 

  57. Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M (2008) Adv Funct Mater 18:1399–1406

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Gerda Winterleitner from the Institute of Analytical Chemistry and Food Chemistry for technical support. Financial support from the European Research Council (Project “Oxygen”, N 207233) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey M. Borisov.

Additional information

Published in the special paper collection Optical Biochemical and Chemical Sensors with guest editor Laura M. Lechuga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 711 kb)

(MPG 4.85 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, S.M., Klimant, I. New luminescent oxygen-sensing and temperature-sensing materials based on gadolinium(III) and europium(III) complexes embedded in an acridone–polystyrene conjugate. Anal Bioanal Chem 404, 2797–2806 (2012). https://doi.org/10.1007/s00216-012-6244-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6244-8

Keywords

Navigation