Skip to main content
Log in

Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy–LIBS sensor fusion

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In general, any standoff sensor for the effective detection of explosives must meet two basic requirements: first, a capacity to detect the response generated from only a small amount of material located at a distance of several meters (high sensitivity) and second, the ability to provide easily distinguishable responses for different materials (high specificity). Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) are two analytical techniques which share similar instrumentation and, at the same time, generate complementary data. These factors have been taken into account recently for the design of sensors used in the detection of explosives. Similarly, research on the proper integration of both techniques has been around for a while. A priori, the different operational conditions required by the two techniques oblige the acquisition of the response for each sensor through sequential analysis, previously necessary to define the proper hierarchy of actuation. However, such an approach does not guarantee that Raman and LIBS responses obtained may relate to each other. Nonetheless, the possible advantages arising from the integration of the molecular and elemental spectroscopic information come with an obvious underlying requirement, simultaneous data acquisition. In the present paper, strong and weak points of Raman spectroscopy and LIBS for solving explosives detection problems, in terms of selectivity, sensitivity, and throughput, are critically examined, discussed, and compared for assessing the ensuing options on the fusion of the responses of both sensing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wallin S, Pettersson A, Ostmark H, Hobro A (2009) Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem 395:259–274

    Article  CAS  Google Scholar 

  2. Moore DS (2007) Recent advances in trace explosives detection instrumentation. Sens Imaging 8:9–38

    Article  Google Scholar 

  3. Miziolek A, De Lucia FC, Munson CA, Gottfried JL (2008) Recent progress in LIBS-based technologies for security applications. Laser Applications to Chemical, Security and Environmental Analysis. OSA (Optical Society of America) Technical Digest (CD), paper LThC1.

  4. Pacheco-Londoño LC, Ortiz-Rivera W, Primera-Pedrozo OM, Hernández-Rivera SP (2009) Vibrational spectroscopy standoff detection of explosives. Anal Bioanal Chem 395:323–335

    Article  Google Scholar 

  5. Wiens RC, Sharma SK, Thompson J, Misra AK, Lucey PG (2005) Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Spectrochim Acta A 61:2324–2334

    Article  Google Scholar 

  6. Giakoumaki A, Osticioli I, Anglos D (2006) Spectroscopic analysis using a hybrid LIBS–Raman system. Appl Phys A 83:537–541

    Article  CAS  Google Scholar 

  7. Courrèges-Lacoste GB, Ahlers B, Rull Pérez F (2007) Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Spectrochim Acta A 68:1023–1028

    Article  Google Scholar 

  8. Escudero-Sanz I, Ahlers B, Courrèges-Lacoste GB (2008) Optical design of a combined Raman–laser-induced-breakdown-spectroscopy instrument for the European Space Agency ExoMars Mission. Opt Eng 47:033001

    Article  Google Scholar 

  9. Sharma SK, Misra AK, Lucey PG, Wiens RC, Clegg SM (2007) Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Spectrochim Acta A 68:1036–1045

    Article  CAS  Google Scholar 

  10. Sharma SK, Misra AK, Lucey PG, Lentz RCF (2009) A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim Acta A 73:468–476

    Article  Google Scholar 

  11. Osticioli I, Mendes NFC, Porcinai S, Cagnini A, Castellucci E (2009) Spectroscopic analysis of works of art using a single LIBS and pulsed Raman setup. Anal Bioanal Chem 394:1033–1041

    Article  CAS  Google Scholar 

  12. Carter JC, Angel SM, Lawrence-Snyder M, Scaffidi J, Whipple RE, Reynolds JG (2005) Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument. Appl Spectrosc 59:769–775

    Article  CAS  Google Scholar 

  13. Moros J, Lorenzo JA, Lucena P, Miguel-Tobaria L, Laserna JJ (2010) Simultaneous Raman spectroscopy–laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Anal Chem 82:1389–1400

    Article  CAS  Google Scholar 

  14. Haley L, Thekkadath G (1998) Laser detection of explosive residues. US Patent 5760898

  15. López-Moreno C, Palanco S, Laserna JJ, Lucia D, Jr F, Miziolek AW, Rose J, Walters RA, Whitehouse A (2006) Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. J Anal At Spectrom 21:55–60

    Article  Google Scholar 

  16. González R, Lucena P, Tobaria LM, Laserna JJ (2009) Standoff LIBS detection of explosive residues behind a barrier. J Anal At Spectrom 24:1123–1126

    Article  Google Scholar 

  17. Laserna JJ, Fernández-Reyes R, González R, Tobaria L, Lucena P (2009) Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond. Optic Express 17:10265–10276

    Article  CAS  Google Scholar 

  18. Ferrero A, Laserna JJ (2008) A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes. Spectrochim Acta B 63:305–311

    Article  Google Scholar 

  19. Gaft M, Nagli L (2008) UV gated Raman spectroscopy for standoff detection of explosives. Opt Mater 30:1739–1746

    Article  CAS  Google Scholar 

  20. Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H (2009) Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance. Propellants Explos Pyrotech 34:297–306

    Article  CAS  Google Scholar 

  21. De Lucia Jr FC, Gottfried JL, Munson CA, Miziolek AW (2007) Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination. Spectrochim Acta B 62:1399–1404

    Article  Google Scholar 

  22. Gottfried JL, De Lucia Jr FC, Munson CA, Miziolek AW (2007) Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection. Spectrochim Acta B 62:1405–1411

    Article  Google Scholar 

  23. Waterbury RD, Pal A, Killinger DK, Rose J, Dottery EL, Ontai G (2008) Standoff LIBS measurements of energetic materials using a 266 nm excitation laser. Proc SPIE 6954:695409–695409-5

    Google Scholar 

  24. De Lucia Jr FC, Gottfried JL, Munson CA, Miziolek AW (2008) Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues. Appl Opt 47:G112–G121

    Article  Google Scholar 

  25. Rai S, Rai AK, Thakur SN (2008) Identification of nitro-compounds with LIBS. Appl Phys B 91:645–650

    Article  CAS  Google Scholar 

  26. Boumans PWJM, Vrakking JJAM (1987) Detection limit including selectivity as a criterion for line selection in trace analysis using inductively coupled plasma-atomic emission spectrometry (ICP-AES)—a tutorial treatment of a fundamental problem of AES. Spectrochim Acta B 42:819–840

    Article  Google Scholar 

  27. James DW, Leong WH (1970) Structure of molten nitrates. Part 4.—Relative intensity study in Raman spectra. Trans Faraday Soc 66:1948–1954

    Article  CAS  Google Scholar 

  28. Abdelli-Messaci S, Kerdja T, Bendib A, Malek S (2005) CN emission spectroscopy study of carbon plasma in nitrogen environment. Spectrochim Acta B 60:955–959

    Article  Google Scholar 

  29. Baudelet M, Boueri M, Yu J, Mao SS, Piscitelli V, Mao X, Russo RE (2007) Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis. Spectrochim Acta B 62:1329–1334

    Article  Google Scholar 

  30. Sallé B, Mauchien P, Maurice S (2007) Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects. Spectrochim Acta B 62:739–768

    Article  Google Scholar 

  31. Cabalín LM, González A, Ruiz J, Laserna JJ (2010) Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy. Spectrochim Acta B 65:680–687

    Article  Google Scholar 

  32. López-Moreno C, Palanco S, Laserna JJ (2007) Stand-off analysis of moving targets using laser-induced breakdown spectroscopy. J Anal At Spectrom 22:84–87

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Project CTQ2007-60348 of the Spanish Ministerio de Ciencia e Innovación and by Excellence Research Project P07-FQM-03308 of the Secretaría General de Universidades, Investigación y Tecnología, Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía. The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement no. 218037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Laserna.

Additional information

Published in the special issue Laser-Induced Breakdown Spectroscopy with Guest Editors Jagdish P. Singh, Jose Almirall, Mohamad Sabsabi, and Andrzej Miziolek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moros, J., Lorenzo, J.A. & Laserna, J.J. Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy–LIBS sensor fusion. Anal Bioanal Chem 400, 3353–3365 (2011). https://doi.org/10.1007/s00216-011-4999-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4999-y

Keywords

Navigation