Skip to main content
Log in

Recent Advances in Trace Explosives Detection Instrumentation

  • Origianal Article
  • Published:
Sensing and Imaging: An International Journal Aims and scope Submit manuscript

Abstract

There has been a huge increase in instrument development for trace detection of explosives in the past 3 years. This is especially true for methods that can be used at a stand off distance, driven by the frightening increase in the use of improvised explosive devices in both suicide and road side bombings. This review attempts to outline and enumerate these recent developments, with details about the improvements made as well as where further improvements might come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Moore D.S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments 75: 2499–2512

    Article  Google Scholar 

  • Oxley J.C., Smith J. (2006) Peroxide explosives. In: Schubert H., Kuznetsov A. (eds). Proceedings of the NATO advanced workshop on detection and disposal of improvised explosives, NATO security through science series – B: Physics and Biophysics. Springer, Dordrecht, pp. 113–121

    Google Scholar 

  • Oxley, J. C., Smith, J. L., Shinde, K., & Moran, J. (2005). Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propellants Explosives Pyrotechnics 30, 127

  • Oxley, J. C., Smith, J. L., & Luo, W. (2007). Determination of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD) vapor pressures using gas chromatography. Propellants Explosives Pyrotechnics, in press

  • Xiang, H. W., & Tan, L. C. (1994). New vapor-pressure equation. International Journal of Thermophysics, 15, 711

    Google Scholar 

  • Scatchard, G., Kavanagh, G. M., & Ticknor, L. B. (1952). Vapor liquid equilibrium. Journal of American Chemistry Society, 74, 3715

    Google Scholar 

  • Ramirez, M. L., Pacheco-Londono, L. C., Pena, A. J., & Hernandez-Rivera, S. P. (2006). Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense V. In Edward M. Carapezza, (ed.), Proceedings of the SPIE (Vol. 6201, 62012B). Belllingham, WA: SPIE

  • Pacheco-Londono, L. C. (2005). Hydrogen peroxide water mixtures. University of Puerto Rico Mayaguez M.S. Thesis

  • Jeremic, A., & Nehorai, A. (2000). Landmine detection and localization using chemical sensor array processing. IEEE Transactions on Signal Processing, 48, 1295

    Google Scholar 

  • Turecek J. (2006) Technical masking of IEDs. In: Schubert H., Kuznetsov A. (eds). Proceedings of the NATO advanced workshop on detection and disposal of improvised explosives, NATO Security through Science Series – B: Physics and Biophysics. Springer, Dordrecht, pp. 131–142

    Google Scholar 

  • Harper R.J., Almirall J.R., Furton K.G. (2005) Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection. Talanta 67: 313–327

    Article  Google Scholar 

  • Lareau, R. T. (2004). In Proceedings of the NATO advanced research workshop on electronic noses and sensors for the detection of explosives, NATO Science Series II. Mathematics, Physics and Chemistry – v. 159 (pp. 289–299). Dordrecht: Kluwer

  • Nambayah M., Quickenden T.I. (2004) A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals. Talanta 63: 461–467

    Article  Google Scholar 

  • Kuznetsov A.V., Osetrov O.I. (2006) Detection of improvised explosives (IE) and explosive devices (IED) – Overview. In: Schubert H., Kuznetsov A. (eds). Proceedings of the NATO advanced workshop on detection and disposal of improvised explosives, NATO Security through Science Series – B: Physics and Biophysics. Springer, Dordrecht, pp. 7–26

    Google Scholar 

  • Bobrovnikov S. (2006) Development of methods and equipment for detection of explosives vapors in the atmosphere with laser. In: Schubert H., Kuznetsov A. (eds). Proceedings of the NATO advanced workshop on detection and disposal of improvised explosives, NATO Security through Science Series – B: Physics and Biophysics. Springer, Dordrecht, pp. 51–68

    Google Scholar 

  • NRC Board on Chemical Sciences and Technology. (2004). Existing and potential standoff explosives detection technologies. Washington, DC: NRC/NAS.

  • Verkouteren R.M., Gillen G., Taylor D.W. (2006) Piezoelectric trace vapor calibrator. Review of Scientific Instruments 77: 085104

    Article  Google Scholar 

  • Primera-Pedrozo, O. M., Pacheco-Londono, L., Ruiz, O., Ramirez, M., Soto-Feliciano, Y. M., De La Torre-Quintana, L. F., & Hernandez-Rivera, S. P. (2004). Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense IV. In: Edward M. Carapezza (Ed.), Proceedings of the SPIE (Vol. 5778, p. 543). Belllingham, WA: SPIE

  • Barreto-Caban, M. A., Pacheco-Londono, L., Ramirez, M. L., & Hernandez-Rivera, S. P. (2006). Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense V. In Edward M. Carapezza (Ed.), Proceedings of the SPIE (Vol. 6201, p. 620129). Belllingham, WA: SPIE

  • Mercado L., Torres P.M., Gomez L.M., Mina N., Hernandez S.P., Lareau R.T., Chamberlain R.T., Castro-Rosario M.E. (2004) Synthesis and characterization of high-energy nanoparticles. Journal of Physical Chemistry B 108: 12314–12317

    Article  Google Scholar 

  • Crabbe, S., Eng, L., Gardhagen, P., & Berg, A., (2005). Detection and remediation technologies for mines and minelike targets X. In Russell S. Harmon, J. Thomas Broach, John H. Holloway, Jr. (eds.), Proceedings of the SPIE (Vol. 5794, p. 762). Belllingham, WA: SPIE

  • Sjökvist, S., Uppsäll, M., & Letalick, D. (2006). Detection and remediation technologies for mines and minelike targets XI. In J. Thomas Broach, Russell S. Harmon, John H. Holloway, Jr., (Eds.), Proceedings of the SPIE (Vol. 6217, p. 62170J). Belllingham, WA: SPIE

  • Ravikrishna R., Valsaraj K.T., Price C.B., Brannon J.M., Hayes C.A., Yost S.L. (2004) Vapor-phase transport of explosives from buried sources in soils. Journal of the Air & Waste Management Association 54: 1525–1533

    Google Scholar 

  • Batlle R., Nerin C., Crescenzi C., Carlsson H. (2005) Supercritical fluid extraction of energetic nitroaromatic compounds and their degradation products in soil samples. Analytical Chemistry 77: 4241–4247

    Article  Google Scholar 

  • Lu Q., Collins G.E., Smith M., Wang J. (2002) Sensitive capillary electrophoresis microchip determination of trinitroaromatic explosives in nonaqueous electrolyte following solid phase extraction. Analytical Chemistry Acta 469: 253–260

    Article  Google Scholar 

  • Baez, B., Florian, V., Hernandez-Rivera, S. P., Cabanzo, A., Correa, S., Irrazabal, M., Briano, J. G., & Castro, M. E. (2006). Detection and remediation technologies for mines and minelike targets XI. In J. Thomas Broach, Russell S. Harmon, & John H. Holloway, Jr. (Eds.), Proceedings of the SPIE (Vol. 6217, p. 62171M). Belllingham, WA: SPIE

  • Waddell R., Dale D.E., Monagle M., Smith S.A. (2005) Determination of nitroaromatic and nitramine explosives from a PTFE wipe using thermal desorption-gas chromatography with electron-capture detection. Journal of Chromatography A 1062: 125–131

    Article  Google Scholar 

  • Grossman, S. (2005). Detection and remediation technologies for mines and minelike targets X. In Russell S. Harmon, J. Thomas Broach, & John H. Holloway, Jr. (Eds.), Proceedings of the SPIE (Vol. 5794, p. 717). Belllingham, WA: SPIE

  • Lokhnauth J.K., Snow N.H. (2006) Stir-bar sorptive extraction and thermal desorption-ion mobility spectrometry for the determination of trinitrotoluene and l,3,5-trinitro-l,3,5-triazine in water samples. Journal of Chromatography A 1105: 33–38

    Article  Google Scholar 

  • Batlle R., Carlsson H., Tollbäck P., Colmsjö A., Crescenzi C. (2003) Enhanced detection of nitroaromatic explosive vapors combining solid-phase extraction-air sampling, supercritical fluid extraction, and large-volume injection-GC. Analytical Chemistry 75: 3137–3144

    Article  Google Scholar 

  • Schulte-Ladbeck R., Karst U. (2003) Determination of triacetonetriperoxide in ambient air. Analytica Chimica Acta 482: 183–188

    Article  Google Scholar 

  • Lovell, J. S., & French, P. D. (2004) Detection and remediation technologies for mines and minelike targets IX. In Russell S. Harmon, John H. Broach, & John H. Holloway, Jr. (Eds.), Proceedings of the SPIE (Vol. 5415, p. 494). Belllingham, WA: SPIE

  • Sutin, A., Libbey, B., Kurtenoks, V., Fenneman, D., & Sarvazyan, A. (2006). Detection and remediation technologies for mines and minelike targets XI. In J. Thomas Broach, Russell S. Harmon, & John H. Holloway, Jr. (Eds.), Proceedings of the SPIE (Vol. 6217, p. 62171B). Belllingham, WA: SPIE

  • Cotte-Rodriguez I., Handberg E., Noll R.J., Kilgour D.P.A., Cooks R.G. (2005) Improved detection of low vapor pressure compounds in air by serial combination of singlesided membrane introduction with fiber introduction mass spectrometry (SS-MIMS-FIMS). Analyst 150: 679–686

    Article  Google Scholar 

  • Kannan G.K., Nimal A.T., Mittal U., Yadava R.D.S., Kapoor J.C. (2004) Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4 dinitrotoluene (DNT) vapour detection. Sensors and Actuators B 101: 328–334

    Article  Google Scholar 

  • Kannan G.K., Kappor J.C. (2005) Adsorption studies of carbowax and poly dimethyl siloxane to use as chemical array for nitro aromatic vapour sensing. Sensors and Actuators B 110: 312–320

    Article  Google Scholar 

  • Perr J.M., Furton K.G., Almirall J.R. (2005) . Journal of Separation Science 28: 177–183

    Article  Google Scholar 

  • Oxley, J. C., Smith, J. L., Kirschenbaum, L, Shinde, K. P., & Marimganti, S. (2004). Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense III. In Edward M. Carapezza (Ed.), Proceedings of the SPIE (Vol. 5403, p. 246). Belllingham, WA: SPIE

  • Oxley J.C., Smith J.L., Kirschenbaum L.J., Shinde K.R., Marimganti S. (2005) Accumulation of explosives in hair. Journal of Forenic Sciences 50: 826–831

    Google Scholar 

  • Sleeman, R., Richards, S. L., Fletcher, I., Burton, A., Luke, J. G., et al (2004). In Proceedings of the NATO advanced research workshop on vapour and trace detection of explosives for anti-terrorism purposes. NATO Science Series II. Mathematics, Physics and Chemistry (V. 167, p. 133–142). Dordrecht: Kluwer

  • Clausen J., Robb J., Curry D., Korte N. (2004) A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environmental Pollution 129: 13–21

    Article  Google Scholar 

  • Marple, R. L., & LaCourse, W. R. (2004). Environmental monitoring and remedation III. In T. Vo-Dinh, G. Gauglitz, R. A. Lieberman, K. P. Schaefer, & D. K. Killinger (Eds.), Proceedings of SPIE (Vol. 5270, p. 161). Bellingham, WA: SPIE

  • Pinnaduwage, L. A., Boiadjiev, V., Hawk, J. E., & Thundat, T. (2003). Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers. Applied Physics Letters, 83, 1471

    Google Scholar 

  • Davies J.P., Blackwood L.G., Davis S.G., Goodrich L.D., Larson R.A. (1993) Design and calibration of pulsed vapor generators for 2,4,6-trinitrotoluene, cyclo-1,3,5 trimethylene-2,4,6-trinitramine, and Pentaerythritol Tetranitrate. Analytical Chemistry 65: 3004–3009

    Article  Google Scholar 

  • Holl, G. (2004). In Proceedings of the NATO advanced research workshop on vapour and trace detection of explosives for anti-terrorism purposes, NATO Science Series II. Mathematics, Physics and Chemistry (V. 167, p. 43–50). Dordrecht: Kluwer

  • Dorzhkin L.M., Nefedov V.A., Sabelnikov A.G., Sevastjanov V.G. (2004) Detection of trace amounts of explosives and/or explosive related compounds on various surfaces by a new sensing technique/material. Sensors and Actuators B 99: 568–570

    Article  Google Scholar 

  • Cotte-Rodriguez, I., Takats, Z., Talaty, N., Chen, H. W., & Cooks, R.G. (2005). Desorption electrospray ionization of explosives on surfaces: Sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Analytical Chemistry, 77, 6755

  • Gillen, G., Mahoney, C., Wight, S., & Lareau, R. (2006). Characterization of high explosive particles using cluster secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 1949

  • Munson, C. A., Gottfried, J. L., De Lucia, F. C., McNesby, K. L., & Miziolek, A. W. (2007). In J. Yinon (Ed.), Explosives detection. Heidelberg: Springer in press

  • Dixon, S. R., Groves, D. M., Cartwriteht, P. A., Cairns, S. N., Brookes, M. D., & Nicklin, S. (2004). In Proceedings of the NATO advanced research workshop on vapour and trace detection of explosives for anti-terrorism purposes, NATO Science Series II. Mathematics, Physics and Chemistry, (V. 167, p. 31–42). Dordrecht: Kluwer

  • Shaw, J. A., Seldomridge, N. L., Dunkle, D. L., Nugent, P. W., Spangler, L. H., Bromenshenk, J. J., et al. (2005). Polarization LIDAR measurements of honey bees in flight for locating land mines. Optics Express, 13, 5853

    Google Scholar 

  • King, T. L., Horine, F. M., Daly, K. C., & Smith, B. H. (2004). Explosives detection with hard-wired moths. IEEE Transactions Instrumentation and Measurement, 53, 1113

    Google Scholar 

  • Mott, M. National Geographic. (2004) http://news.nationalgeographic.com/news/2004/02/0210_040210 minerats.html

  • APOPO. (2003) http://www.apopo.org

  • Otto J., Brown M.F., Long W. (2002) Training rats to search and alert on contraband odors. Applied Animal Behaviour Science 77: 217–232

    Article  Google Scholar 

  • Holmgren E., Carlsson H., Goede P., Crescenzi C. (2005) Determination and characterization of organic explosives using porous graphitic carbon and liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A 1099: 127–135

    Article  Google Scholar 

  • Staples, E. J., & Viswanathan, S. (2005). Ultrahigh-speed chromatography and virtual chemical sensors for detecting explosives and chemical warfare agents. IEEE Sensors Journal, 5, 622

    Google Scholar 

  • Buryakov I.A. (2004) Express analysis of explosives, chemical warfare agents and drugs with multicapillary column gas chromatography and ion mobility increment spectrometry. Journal of Chromatography B 800: 75–82

    Article  Google Scholar 

  • Gruznov, V. M., Baldin, M. N., & Filonenko, V. G. (2004). In Proceedings of the NATO advanced research workshop on vapour and trace detection of explosives for anti-terrorism purposes, NATO Science Series II. Mathematics, Physics and Chemistry, (V. 167, p. 87–99). Dordrecht: Kluwer

  • Cernosek, R. W., Robinson, A. L., Cruz, D. Y., Adkins, D. R., Barnett, J. L., et al (2006). Micro (MEMS) and nanotechnologies for space applications. In T. George, Z.-Y. Cheng (Eds.), Proceedings of SPIE (Vol. 6223, p. 622306). Bellingham, WA: SPIE

  • Manginell, R. P., Lewis, P. R., Adkins, D. R., Kottenstette, R. J., Wheeler, D. et al (2004). Lab-On-a-chip: platforms, devices, and applications. In L. A. Smith, & D. Sobek (Eds.), Proceedings of SPIE (Vol. 5591, p. 44). Bellingham, WA: SPIE

  • http://www.ca.sandia.gov/pubs/factsheets/explosives/microhound.hound0905.pdf

  • http://www.ca.sandia.gov/pubs/factsheets/chemlab_cdetector.pdf

  • Fair, R. B., Khlystov, A., Srinivasan, V., Pamula, V. K., & Weaver, K. N. (2004). Lab-on-a-Chip: platforms, devices, and applications. In Linda A. Smith, Daniel Sobek (Eds.), Proceedings of SPIE (Vol. 5591, p. 113). Bellingham, WA: SPIE

  • Pamula, V. K. In NATO advanced research workshop on electronic noses and sensors for the detection of explosives, NATO Science Series, II (Vol. 159, pp. 279–288).

  • Pumera M. (2006) Analysis of explosives via microchip electrophoresis and conventional capillary electrophoresis: A review. Electrophoresis 27: 244–256

    Article  Google Scholar 

  • Larsson A., Angbrant J., Ekeroth J., Månsson P., Liedberg B. (2006) A novel biochip technology for detection of explosives – TNT: Synthesis, characterisation and application. Sensors and Actuators B 113: 730–748

    Article  Google Scholar 

  • Bentes E., Gomes H.L., Stallinga P., Moura L. (2004) Detection of explosive vapors using organic thin-film transistors. IEEE Sensors 2004: 766–769

    Article  Google Scholar 

  • Patel, S. V., Hobson, S. T., Cemalovic, S., & Mlsna, T. E. (2005). Unmanned/Unattended sensors and sensor networks II. In E. M. Carapezza (Ed.), Proceedings of SPIE (Vol. 5986, p. 59860M-1) Bellingham, WA: SPIE

  • Walsh, G., Sun, C. -Q., Xiao, H., Liu, N., Dong, J. -H., & Romero, V. (2006). Detection and remediation technologies for mines and minelike targets XI. In J. Thomas Broach, Russell S. Harmon, & John H. Holloway Jr. (Eds.), Proceedings of SPIE (Vol. 6217, 62171L).

  • Apblett A.W., Kiran B.P., Malka S., Materer N.F., Piquette A. (2006) Nanotechnology for neutralization of terrorist explosives. Ceramic Transact 172: 29–35

    Google Scholar 

  • Nieto, S., Santana, A., Hernandez-Rivera, S. P., Lareau, R., Chamberlain, R. T., & Castro, M. E. (2004). Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense III. In Edward M. Carapezza (Ed.), Proceedings of the SPIE (Vol. 5403, p. 256) Bellingham, WA: SPIE

  • Sailor, M. J., Trogler, W. C., Content, S., Letant, S, Sohn, H. L., Fainman, Y., & Shames, P. (2000). Unattended ground sensor technologies and applications II. In E. M. Carapezza, & T. M. Hintz (Eds.), Proceedings of SPIE (Vol. 4040, p. 95) Bellingham, WA: SPIE

  • Germanenko I.N., Li S.-T., El-Shall M.S. (2001) Decay dynamics and quenching of photoluminescence from silicon nanocrystals by aromatic nitro compounds. Journal of Physical Chemistry B 105: 59–66

    Article  Google Scholar 

  • Pinnaduwage, L. A., Hedden, D. L., Gehl, A., Boiadjiev, V. I., Hawk, J.E. et al (2004). A sensitive, handheld vapor sensor based on microcantilevers. Review of Scientific Instruments, 75, 4554

  • Datskos P.G., Lavrik N.V., Sepaniak M.L. (2003) Detection of explosive compounds with the use of microcantilevers with nanoporous coatings. Sensor Letter 1: 25–32

    Article  Google Scholar 

  • Li, P., Li, X.-X., Zuo, G.-M., Liu, J., Wang, Y.-L., Liu, M., & Jin, D.-Z. (2006). Silicon dioxide microcantilever with piezoresistive element integrated for portable ultraresoluble gaseous detection. Applied Physics Letters 89, 074104

  • Voiculescu, I., Zaghloul, M. E., McGill, R. A., Houser, E. J., & Fedder, G. K. (2005). Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons. IEEE Sensors Journal, 5, 641

  • Montmeat, P., Madonia, S., Pasquinet, E., Hairault, L., & Gros, G. P. et al (2005). Metalloporphyrins as sensing material for quartz–crystal microbalance nitroaromatics sensors. IEEE Sensors Journal, 5, 610

  • Pinnaduwage, L. A., Gehl, A, Hedden, D. L., Muralidharan, G., Thundat, T, Lareau, R. T., Sulchek, T., Manning, L., Rogers, B., Jones, M., & Adams, J. D. (2003). A microsensor for trinitrotoluene vapour. Nature (London), 425, 474

  • Pinnaduwage, L. A., Wig, A., Hedden, D. L., Gehl, A., Thundat, T., Yi, T., & Lareau, R. T. (2004). Detection of trinitrotoluene via deflagration on a microcantilever. Journal Applied Physics, 95, 5871

    Google Scholar 

  • Pinnaduwage L.A., Thundat T., Gehl A., Wilson S.D., Hedden D.L., Lareau R.T. (2004) Desorption characteristics of uncoated silicon microcantilever surfaces for explosive and common nonexplosive vapors. Ultramicroscopy 100: 211–216

    Article  Google Scholar 

  • Liu Y.-S., Ugaz V.M., Rogers W.J., Mannan M.S., Saraf S.R. (2005) Development of an advanced nanocalorimetry system for material characterization. Journal of Loss Prevention in the Process Industries 18: 139–144

    Article  MATH  Google Scholar 

  • Pan X.-P., Tian K., Jones L.E., Cobb G.P. (2006) Method optimization for quantitative analysis of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by liquid chromatography-electrospray ionization mass spectrometry. Talanta 70: 455–459

    Article  Google Scholar 

  • Cotte-Rodriguez I., Chen H., Cooks R.G. (2006) Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization. Chemical Communications 2006: 953–955

    Article  Google Scholar 

  • Cotte-Rodriguez I., Cooks R.G. (2006) Non-proximate detection of explosives and chemical warfare agent simulants by desorption electrospray ionization mass spectrometry. Chemical Communications 2006: 2968–2970

    Article  Google Scholar 

  • Osorio, C., Gomez, L. M., Hernandez, S. P., & Castro, M. E. (2005). Detection and remediation technologies for mines and minelike targets X. In Russell S. Harmon, J. Thomas Broach, & John H. Holloway Jr. (Eds.), Proceedings of the SPIE (Vol. 5794, p. 803). Belllingham, WA: SPIE

  • Martin, A. N., Farquar, G. R., Gard, E. E., Frank, M., & Fergenson, D. P. (2007). Identification of high explosives using single-particle aerosol mass spectrometry. Analytical Chemistry, 75(5), 1918–1925 (ASAP Jan 24, 2007), http://pubs.acs.org/cgi-bin/sample.cgi/ancham/asap/html/ac061581z.html

    Google Scholar 

  • Tam M., Hill H.H. (2004) Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Analytical Chemistry 76: 2741–2747

    Article  Google Scholar 

  • Mullen C., Huestis D., Coggiola M., Oser H. (2006) Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses. International Journal of Mass Spectrometry 252: 69–72

    Article  Google Scholar 

  • Mullen C., Irwin A., Pond B.V., Huestis D.L., Coggiola M.J., Oser H. (2006) Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry. Analytical Chemistry 78: 3807–3814

    Article  Google Scholar 

  • Correa, S. N., De Jesus, M., Mina, N., Castro, M. E., Blanco, A., Hernandez-Rivera, S. P., Cody, R. B., Laramee, J. A. (2003). Detection and remediation technologies for mines and minelike targets VIII. In R. S. Harmon, J. H. Holloway, Jr. J. T. Broach (Eds.), Proceedings of SPIE (Vol. 5089, p. 1001). Bellingham, WA: SPIE

  • Sambouli, A., El Bouri, A., Bouayoun, T., & Bellimam, M. A. (2004). Headspace-GC/MS detection of TATP traces in post-explosion debris. Forensic Science International, 146, S191–S194

  • Buttigieg G.A., Knight A.K., Denson S., Pommier C., Denton M.B. (2003) Characterization of the explosive triacetone triperoxide and detection by ion mobility spectrometry. Forensic Science International 135: 53–59

    Article  Google Scholar 

  • Clowers B.H., Siems W.F., Hill H.H., Massick S.M. (2006) Hadamard transform ion mobility spectrometry. Analytical Chemistry 78: 44–51

    Article  Google Scholar 

  • Baumann, M. J., Hunter, J. A., Hannum, D. W., & Horton, R. (2004). In IEEE 38th annual international Carnahan conference on security technolology 2004 (pp. 359–363).

  • Wallis, E., Griffin, T. M., Popkie, N., Eagan, M. A., McAtee, R. F. et al (2005). Chemical and biological sensing VI. In P. J. Gardner (Ed.), Proceedings of the SPIE (Vol. 5795, p. 54). Bellingham, WA: SPIE

  • Beal, R. W., & Brill, T. B. (2005). Vibrational Behavior of the –NO2 Group in energetic compounds. Applied Spectroscopy, 59, 1194

    Google Scholar 

  • Willer U., Saraji M., Khorsandi A., Geiser P., Schade W. (2006) Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Optics and Lasers in Engineering 44: 699–710

    Article  Google Scholar 

  • Primera-Pedrozo, O. M., Pacheco-Londono, L., De La Torre-Quintana, L. F., Hernandez-Rivera, S. P., Chamberlain, R. T., Lareau, R. T. (2004). Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense III. In Edard M. Carapezza (Ed.) Proceedings of the SPIE (Vol. 5403, p. 237). Belllingham, WA: SPIE.

  • Soto-Feliciano, Y., Primera-Pedrozo, O. M., Pacheco-Londono, L., Hernandez-Rivera, S. P. (2006). Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense V. In Edward M. Carapezza (Ed.), Proceedings of the SPIE (Vol. 6201, p. 62012H). Belllingham, WA:SPIE.

  • Primera-Pedrozo, O. M., Soto-Feliciano, Y., Pacheco-Londono, L., De La Torre-Quintana, L. F., Hernandez-Rivera, S. P., In proceedings of the SPIE (Vol. 6201, p. 62012A). Belligton, WA, p. 62012A.

  • Pacheco-Londono, L., Primera-Pedrozo, O. M., Ramirez, M., Ruiz, O., Hernandez-Rivera, S. P. (2006) Infrared technology and applications XXXII, In:B. F. Andresen,G. F. Fulop, & P. R. Norton (Eds.), Proceedings of SPIE (Vol. 6206, p. 620634). Bellingham, WA:SPIE.

  • Colon, Y. M., Ramos, C. M., Hernandez-Rivera, S. P., Munoz, M. A., Mina, N. (2005). Detection and remediation technologies for mines and minelike targets X. In Russell S. Harmon, J. Thomas Broach, & John H. Holloway, Jr. (Eds.) Proceedings of the SPIE (Vol. 5794, p 729)Belllingham, WA:SPIE.

  • Herrera-Sandoval, G. M., Ballesteros-Rueda, L. M., Mina-Camilde, N., Castro-Rosario, M. E., Briano, J. G., Hernandez-Rivera, S. P. (2006). Detection and remediation technologies for mines and minelike targets XI, In J. Thomas Broach,Russell S. Harmon, & John H. Holloway, Jr. (Eds), Proceedings of the SPIE (Vol. 6217, p621738). Belllingham, WA:SPIE.

  • Ballesteros-Rueda, L. M., Herrera-Sandoval, G. M., Mina, N., Castro-Rosario, M. E., Briano, J. G., Hernandez-Rivera, S.P. (2006). Detection and remediation technologies for mines and minelike targets XI, In J.Thomas Broach, Russell S. Harmon,John H. Holloway, Jr. (Eds.), Proceedings of the SPIE (Vol. 6217, p. 62173D). Belllingham, WA:SPIE.

  • Vaicikauskas, V., Kabelka, V., Kuprionis, Z., Svedas, V., Kaucikas, M., & Maldutis, E. (2004). Military remote sensing. In G.W. Kamerman, & D.V. Willitts (Eds.) Proceedings of the SPIE (Vol. 5613, p. 21). Bellingham, WA:SPIE.

  • Thomas, R. C., Carter, M. T., & Homrighausen, C. L. (2004). Chemical and biological point sensors for homeland defense, In A. J. Sedlacek, R. Colton, & T. Vo-Dinh (Eds.) Proceedings of the SPIE (Vol. 5269, p. 150). Bellingham, WA:SPIE.

  • Spectrochimica Acta Part A v. 61, no. 10, GEORAMAN 2004.

  • Sharma S.K., Misra A.K., Sharma B. (2005) Portable remote raman system for monitoring hydrocarbon gas hydrates andexplosives in the environment. Spectrochimica Acta A 61: 2404–2412

    Article  Google Scholar 

  • Carter, J. C., Angel, S. M., Lawrence-Snyder, M., Scaffidi, J., Whipple, R. E., & Reynolds, J. G. (2005). Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small raman instrument. Applied Spectroscopy 59, 769

  • Sharma, S. K., Misra, A. K., Lucey, P. G., Angel, S. M., & McKay, C. P. (2006). Remote pulsed raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters. Applied Spectoroscopy, 60, 871

  • Carter J.C., Scaffidi J., Burnett S., Vasser B., Sharma S.K., Angel S.M. (2005) Stand-off Raman detection using dispersive and tunable filter based systems. Spectrochimica Acta A 61: 2288–2298

    Article  Google Scholar 

  • Sedlacek A.J. III, Ray M.D., Wu M. (2004) Application of UV Raman scattering to non-traditional stand-off chemical detection. Trends in Applied Spectroscopy 5: 19–38

    Google Scholar 

  • Blanco, A., Pacheco-Londono, L. C., Pena-Quevedo, A. J., Hernandez-Rivera, S. P. (2006). Detection and remediation technologies for mines and minelike targets XI. In J. T. Broach, R. S. Harmon, & J. H. Holloway (Eds.), Proceedings of the SPIE (Vol. 6217, p. 621737) Bellingham, WA:SPIE.

  • Lewis M.L., Lewis I.R., Griffiths P.R. (2005) Raman spectrometry of explosives with a no-moving-parts fibercoupled spectrometer: A comparison of excitation wavelength. Vibrational Spectroscopy 38: 17–28

    Article  Google Scholar 

  • Lewis, M. L., Lewis, I. R., & Griffiths, P. R. (2004). Anti-Stokes Raman spectrometry with 1064-nm excitation: An effective instrumental approach for field detection of explosives. Applied Spectroscopy, 58, 420

    Google Scholar 

  • Noonan, K. Y., Beshire, M., Darnell, J., & Frederick, K. A. (2005). Qualitative and quantitative analysis of illicit drug mixtures on paper currency using raman microspectroscopy. Applied Spectroscopy 59, 1493

    Google Scholar 

  • Day J.S., Edwards H.G.M., Dobrowski S.A., Voice A.M. (2004) The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints. Spectrochimica Acta A 60: 563–568

    Article  Google Scholar 

  • Hasegawa, T., Nishijo, J., & Umemura, J. (2000). Separation of Raman spectra from fluorescence emission background by principal component analysis. Chemical Physics Letters, 317, 642

    Google Scholar 

  • Loethen, Y. L., Zhang, D. M., Favors, R. N., Basiag, S. B. G., Ben-Amotz, D. (2004). Second-Derivative variance minimization method for automated spectral subtraction. Applied Spectroscopy, 58, 272

    Google Scholar 

  • Jirasek, A., Schulze, G., Yu, M. M. L., Blades, M. W., & Turner, R. F. B. (2004). Accuracy and precision of manual baseline determination. Applied Spectroscopy, 58, 1488

  • Schulze, G., Jirasek, A., Yu, M. M. L., Lim, A., Turner, R. F. B., & Blades, M. W. (2005). Investigation of selected baseline removal techniques as candidates for automated implementation. Applied Spectroscopy, 59, 545

    Google Scholar 

  • Brandt, N. N., Brovko, O. O, Chikishev, A. Y., & Parschuk, O. D. (2006). Optimization of the rolling-circle filter for Raman background subtraction. Applied Spectroscopy, 60, 288

    Google Scholar 

  • Spencer, K. M., Sylvia, J. M., Marren, P. J., Bertone, J. F., & Christesen, S. D. (2004). Chemical and biological point sensors for homeland defense. In A. J. Sedlacek III, R. Colton, and T. Vo-Dinh (Eds.) Proceedings of SPIE (Vol 5269, p. 1) Bellingham, WA:SPIE.

  • Stuart D.A., Biggs K.B., Van Duyne R.P. (2006) Surface-enhanced Raman spectroscopy of half-mustard agent. Analyst 131: 568–572

    Article  Google Scholar 

  • Baker G.A., Moore D.S. (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Analytical Bioanalytical Chemistry 382: 1751–1770

    Article  Google Scholar 

  • De La Cruz-Montoya, E., Jerez, J. L., Balaguera-Gelves, M., Luna-Pineda, T., Castro, M. E., Hernandez-Rivera, S. P. (2006). Optics and photonics in global homeland security. In T.T. Saito & D. Lehrfeld (Eds.) Proceedings of the SPIE (Vol. 6203, p. 62030x)Bellingham, WA:SPIE.

  • Smith, W. E., McCabe, A., McNay, G., Graham, D., Shand, N., & Foulger, B. (2006). Optics and photonics for counter-terrorism and crime fighting II, In C. Lewis, & G. P. Owen (Eds.), Proceedings of the SPIE (Vol. 6402, p. 640202). Bellingham, WA:SPIE.

  • Docherty, F. T., Monaghan, P. B., McHugh, C. J., Graham, D, Smith, W. E., & Cooper, J. M. (2005). Simultaneous multianalyte identification of molecular species involved in terrorism using Raman spectroscopy. IEEE Sensors Journal, 5, 632

  • Paldus B.A., Kachanov A.A. (2005) An historical overview of cavity-enhanced methods. Canadiam Journal of Physics 83: 975–999

    Article  Google Scholar 

  • Todd, M. W., Provencal, R. A., Owano, T. G., Paldus, B. A., Kachanov, A. et al (2002). Application of mid-infrared cavity-ringdown ectroscopy to trace explosives vapor detection using a broadly tunable (6-8mu m) optical parametric oscillator. Applied Physics B: Lasers and Optics, 75, 367

    Google Scholar 

  • Fisk, J. D., Hayes, N. W., Barnett, D., Farries, M., Tasker, K. M., Shaw, A. M. (2005). Optically based biological and chemical sensing, and optically based materials for defence. In J.C. Carrano, A. Zukauskas, A.W. Vere, J.G. Grote, & F. Kajzar (Eds.) Proceedings of SPIE (Vol. 5990, p. 59900T) Bellingham, WA:SPIE

  • Huang F., Schulkin B., Altan H., Federici J.F., Gary D., Barat R., Zimdars D., Chen M.-H., Tanner D.B. (2004) Terahertz study of 1,3,5-trinitro-s-triazine by time-domain and Fourier transform infrared spectroscopy. Applied Physics Letters 85: 5535–5537

    Article  Google Scholar 

  • Chen, Y. -Q., Liu, H. -B., and Zhang, X. -C. (2006). THz Spectra of 4-NT and 2, 6-DNT. SPIE 6212, paper 62120P

  • Shen, Y. -C., Taday, P. F., & Kemp, M. C. (2004). Passive millimetre-wave and terahertz imaging and technology. In R. Appleby, J. M. Chamberlain, & K. A. Krapels, (Eds.), Proceedings of the SPIE (Vol. 5619, p. 82). Bellingham, WA:SPIE.

  • Barber J., Hooks D.E., Funk D.J., Averitt R.D., Taylor A.J., Babikov D. (2005) Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy. Journal Physical Chemistry A 109: 3501–3505

    Article  Google Scholar 

  • Huang, F., Federici, J. F., Gary, D., Barat, R., & Zimdars, D. (2005). In D. O. Thompson, & D. E. Chimenti (Eds.) Review of quantitative nondestructive evaluation (Vol. 24, pp. 578–585). (AIP, 2005)

  • Funk, D. J., Calgaro, F., Averitt, R. D., Asaki, M. L. T., & Taylor, A. J. THz transmission spectroscopy and imaging: Application to the energetic materials PBX 9501 and PBX 9502. Applied Spectroscopy, 58, 428 (2004).

    Google Scholar 

  • Burnett, A., Fan, W. -H., Upadhya, P., Cunningham, J., Edwards, H., Munshi, T, Hargreaves, M., Linfield, E., & Davies, G. (2006). Optics and photonics for counterterrorism and crime fighting II, In C. Lewis, & G. P. Owen (Eds.) Proceedings of the SPIE (Vol. 6402, p64020B)Belllingham, WA:SPIE

  • Yamamoto, K., Yamaguchi, M., Miyamaru, F., Tani, M., Hangyo, M., Ikeda, T., Matsushita, A., Koide, K., Tatsun, M., & Minami, Y. (2004). Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy. Japan Journal of Applied Physics, 43, L414–L417

    Google Scholar 

  • Shen, Y. C., Lo, T., Taday, P. F., Cole, B. E., Tribe, W. R., Kemp, M. C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging 144. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Applied Physics Letters, 86, 241116

    Google Scholar 

  • Fitch, M. J., Dodson, C., Chen, Y. -Q., Liu, H. -B., Zhang, X. -C., Osiander, R. (2005). Terahertz for military and security applications III, In R. Jennifer Hwu, Dwight L. Woolard & Mark J. Rosker (Eds.) Proceedings of the SPIE (Vol. 5790, p. 281) Belllingham, WA: SPIE.

  • Liu, H. -B., Chen, Y. -Q., Bastiaans, G. J., & Zhang, X. -C. (2006). Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Optics Express, 14, 415

    Google Scholar 

  • Dodson, C., Fitch, M. J., Osiander, R., & Spicer, J. B. (2005). Terahertz for military and security applications III. In R. Jennifier Hwu, Dwight L. Woolard, & Mark J. Rosker (Eds.) Proceedings of the SPIE (Vol. 5790, pp 85-93) Belllingham, WA:SPIE.

  • Federici, J. F., Gary, D., Barat, R, & Zimdars, D. (2005). Optics and photonics in global homeland security. In Theodore T. Saito (Ed.) Proceedings of the SPIE (Vol. 5781, p. 75). Belllingham, WA: SPIE.

  • De Lucia, F. C., Petkie, D. T., Shelton, R. K., Westcott, S. L., & Strecker, B. N. (2005). Terahertz for military and security applications III. In R. Jennifer Hwu,Dwight L. Woolard, & Mark J. Rosker (Eds.) Proceedings of the SPIE (Vol. 5790, p. 219) Belllingham, WA: SPIE.

  • Zhong, H., Redo, A., Chen, Y. -Q., & Zhang, X. -C. (2006). Terahertz for military and security applications IV. In Dwight L. Woolard,R. Jennifer Hwu,Mark J. Rosker, & James O. Jensen (Eds.) Proceedings of the SPIE (Vol. 6212, p. 62120L). Belllingham, WA:SPIE.

  • Lu, J. Y., Chen, L. J., Kao, T. F., Chang, H. H., Liu, A. S. et al. (2005). Optoelectronic devices: physics, fabrication, and application II.In J. Piprek (Ed.), Proceedings of the SPIE (Vol. 6013, p. 60130I). Bellingham, WA:SPIE.

  • Tait, G. B., Tepper, G. C., Pestov, D., & Boland, P. M. (2005). Chemical and biological sensors for industrial and environmental security. In A. J. Sedlacek,S. D. Christesen,R. J. Combs, & T. Vo-Dinh (Eds.) Proceedings of the SPIE (Vol. 5994, p. 599407). Bellingham, WA:SPIE.

  • Cao X.-A., Zhang X.-R. (2005) A research on determination of explosive gases utilizing cataluminescence sensor array. Luminescence 20: 243–250

    Article  Google Scholar 

  • Hummel, R. E., Fuller, A. M., Schöllhorn, C., & Holloway, P. H. (2006). Detection of explosive materials by differential reflection spectroscopy. Applied Physics Letters, 88, 231903

    Google Scholar 

  • Peroza, C. A., Osorio-Cantillo, C. M., Morales, M., Hernandez-Rivera, S. P., & Castro-Rosario, M. E. (2006). Detection and remediation technologies for mines and minelike targets XI. In J.T. Broach,R. S. Harmon,J. H. Holloway (Eds.), Proceedings of the SPIE (Vol. 6217, p. 62171N) Bellingham, WA:SPIE.

  • Hodyss R., Beauchamp J.L. (2005) Multidimensional detection of nitroorganic explosives by gas chromatography-pyrolysis ultraviolet detection. Analytical Chemistry 77: 3607–3610

    Article  Google Scholar 

  • Cabalo, J., & Sausa, R. (2005). Trace detection of explosives with low vapor emissions by laser surface photofragmentation–fragment detection spectroscopy with an improved ionization probe. Applied Optics, 44, 1084

    Google Scholar 

  • Swager, T. M. (2004). In J. W. Gardner, & J. Yinon (Eds.), Proceedings of the NATO advanced research workshop on electronic noses and sensors for the detection of explosives, NATO Science Series 2003, v. 159. Dordrecht:Kluwer.

  • Swager T.M. (2005) Poly(arylene ethynylene)s in chemosensing and biosensing. Advances Polymer Science 177: 151–179

    Google Scholar 

  • Fisher, M., Sikes, J., Prather, M., & Wichert, C. (2004). Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense IV. In Edward M. Carapezza (Ed.), Proceedings of the SPIE (Vol. 5778, p. 383). Belllingham, WA: SPIE.

  • White, J., Waggoner, L. P., & Kauer, J. S. (2004). Detection and remediation technologies for mines and minelike targets IX. In Russell S.Harmon,J. Thomas Broach, & John H. Holloway, Jr. (Eds.) Proceedings of the SPIE (Vol. 5415, p. 521). Belllingham, WA: SPIE.

  • Lamarque, T., LeBarny, P., Obert, E., Chastaing, E., Loiseaux, B., & Leray, I. (2006). Optical sensing II. In B. Culshaw, A. G. Mignani, H. Bartelt, L. R. Jaroszewicz (Eds.) Proceedings of the SPIE (Vol. 6189, p. 61890V) Bellingham, WA:SPIE.

  • Chang C.-P., Chao C.-Y., Huang J.-H., Li A.-K., Hsu C.-S., Lin M.-S., Hsieh B.-R., Su A.-C. (2004) Fluorescent conjugated polymer films as TNT chemosensors. Synthetic Metals 144: 297–0301

    Article  Google Scholar 

  • Toal S.J., Trogler W.C. (2006) Polymer sensors for nitroaromatic explosives detection. Journal of Materials Chemistry 16: 2871–2883

    Article  Google Scholar 

  • Shankaran, D. R., Gobi, K. V., Sakai, T., Matsumoto, K., Imato, T, Toko, K., & Miura, N. (2005). A novel surface plasmon resonance immunosensor for 2,4,6-trinitrotoluene (TNT) based on indirect competitive immunoreaction: A promising approach for on-site landmine detection. IEEE Sensors Journal, 5, 616

  • Shankaran D.R., Matsumoto K., Toko K., Miura N. (2006) Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sensors Actuators B 114: 71–79

    Article  Google Scholar 

  • Matsumoto K., Torimaru A., Ishitobi S., Sakai T., Ishikawa H., Toko K., Miura N., Imato T. (2005) Preparation and characterization of a polyclonal antibody from rabbit for detection of trinitrotoluene by a surface plasmon resonance biosensor. Talanta 68: 305–311

    Article  Google Scholar 

  • Bowen, J., Noe, L. J., Sullivan, B. P., Morris, K., Martin, V., & Donnelly, G. (2003). Gas-phase detection of Trinitrotoluene utilizing a solid-phase antibody immobilized on a gold film by means of surface plasmon resonance spectroscopy. Applied Spectroscopy 57, 906

  • Shriver-Lake L.C., Charles P.T., Kusterbeck A.W. (2003) Non-aerosol detection of explosives with a continuous flow immunosensor. Analytical Bioanalytical Chemistry 377: 550–555

    Article  Google Scholar 

  • Golden J., Shriver-Lake L.C., Sapsford K., Ligler F. (2005) A “do-it-yourself ” array biosensor. Methods 37: 65–72

    Article  Google Scholar 

  • Charles P.T., Rangasammy J.G., Anderson G.P., Romanoski T.C., Kusterbeck A.W. (2006) Pentaerythritol trinitrate succinate: a hapten for pentaerythritol tetranitrate. Analytrica Chimica Acta 525: 199–204

    Article  Google Scholar 

  • Ciumasu I.M., Krämer P.M., Weber C.M., Kolb G., Tiemann D., Windisch S., Frese I, Kettrup A.A. (2005) A new, versatile field immunosensor for environmental pollutants. Development and proof of principle with TNT, diuron, and atrazine. Biosens. Bioelectr 21: 354–364

    Article  Google Scholar 

  • Lee S.H., Stubbs D.D., Hunt W.D., Edmonson P.J. (2005) Vapor phase detection of plastic explosives using a SAW resonator immunosensor array. IEEE Sensors 1–2: 468–471

    Google Scholar 

  • Goldman E.R., Medintz I.L., Whitley J.L., Hayhurst A., Clapp A.R., Uyeda H.T. et al. (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transferbased TNT sensor. Journal Amercan Chemical Society 127: 6744–6751

    Article  Google Scholar 

  • Zhang, H. -X., Cao, A. -M., Hu, J. -S., Wan, L. -J., & Lee, S. -T. (2006). Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Analytical Chemistry 78, 1967–1971

  • Chen J.-C., Shih J.-L., Liu C.-H., Kuo M.-Y., Zen J.-M. (2006) Disposable electrochemical sensor for determination of nitroaromatic compounds by a single-run approach. Analytical Chemistry 78: 3752–3757

    Article  Google Scholar 

  • Hrapovic, S., Majid, E., Liu, Y., Male, K., Luong, J. H. T. (2006). Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Analytical Chemistry 78 5504–5512

    Google Scholar 

  • Wang J., Hocevar S.B., Ogorevc B. (2004) Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene. Electrochemistry Commications 6: 176–179

    Article  Google Scholar 

  • Masunaga K., Hayama K., Onoder T., Hayashi K., Miura N., Matsumoto K., Toko K. (2005) Detection of aromatic nitro compounds with electrode polarization controlling sensor. Sensors Actuators B 108: 427–434

    Article  Google Scholar 

  • Wang J. (2004) Microchip devices for detecting terrorist weapons. Analytical Chimica Acta 507: 3–10

    Article  Google Scholar 

  • Yao X., Wang J., Zhang L., Yang P., Chen G. (2006) A three-dimensionally adjustable amperometric detector for microchip electrophoretic measurement of nitroaromatic pollutants. Talanta 69: 1284–1291

    Article  Google Scholar 

  • Fu, X. -J., Benson, R. F., Wang, J., Fries, D., (2005) Remote underwater electrochemical sensing system for detecting explosive residues in the field. Sensors Actuators B 106, 296–301

    Google Scholar 

  • Wang J., Thongngamdee S., Lu D.-L. (2006) Sensitive voltammetric sensing of the 2,3-Dimethyl-2,3-dinitrobutane (Dmnb) explosive taggant. Electroanalysis 18: 971–975

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, D.S. Recent Advances in Trace Explosives Detection Instrumentation. Sens Imaging 8, 9–38 (2007). https://doi.org/10.1007/s11220-007-0029-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11220-007-0029-8

Keywords

Navigation