Skip to main content
Log in

Simultaneous determination of NOGE-related and BADGE-related compounds in canned food by ultra-performance liquid chromatography–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An improved analytical method enabling rapid and accurate determination and identification of bisphenol F diglycidyl ether (novolac glycidyl ether 2-ring), novolac glycidyl ether 3-ring, novolac glycidyl ether 4-ring, novolac glycidyl ether 5-ring, novolac glycidyl ether 6-ring, bisphenol A diglycidyl ether, bisphenol A (2,3-dihydroxypropyl) glycidyl ether, bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether, bisphenol A bis(3-chloro-2-hydroxypropyl) ether, and bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether in canned food and their contact packaging materials has been developed by using, for the first time, ultra-performance liquid chromatography coupled with tandem mass spectrometry. After comparison of electrospray ionization and atmospheric pressure chemical ionization in positive and negative-ion modes, tandem mass spectrometry with positive electrospray ionization was chosen to carry out selective multiple reaction monitoring analysis of novolac glycidyl ethers, bisphenol A diglycidyl ether, and its derivatives. The analysis time is only 5.5 min per run. Limits of detection varied from 0.01 to 0.20 ng g−1 for the different target compounds on the basis of a signal-to-noise ratio (S/N) = 3; limits of quantitation were from 0.03 to 0.66 ng g−1. The relative standard deviation for repeatability was <8.01%. Analytical recovery ranged from 87.60 to 108.93%. This method was successfully applied to twenty samples of canned food and their contact packaging materials for determination of migration of NOGE, BADGE, and their derivatives from can coatings into food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berger U, Oehme M, Girardin L, Fresenius J (2001) Anal Chem 369:115–123

    Article  CAS  Google Scholar 

  2. Xue M, Zhang H (2009) Food Res Dev 30(7):169–173

    Google Scholar 

  3. Satoh K, Ohyama K, Aoki N, Iida M, Nagai F (2004) Food Chem Toxicol 42:983–993

    Article  CAS  Google Scholar 

  4. Garcia RS, Losada PP (2004) J Chromatogr A 1032:37–43

    Article  Google Scholar 

  5. Cottier S, Riquet AM, Feigenbaum A, Pollet B et al (1997) J Chromatogr A 771:366–373

    Article  CAS  Google Scholar 

  6. Pardo O, Yusa V, Leon N, Pastor A (2006) J Chromatogr A 1107:70–78

    Article  CAS  Google Scholar 

  7. Lintschinger J, Rauter W (2000) Eur Food Res Technol 211:211–217

    Article  CAS  Google Scholar 

  8. Poustka J, Dunovska L, Hajslova J, Holadova K et al (2007) Czech J Food Sci 25(4):221–229

    CAS  Google Scholar 

  9. Miao JZ, Xue M, Zhang H (2009) Chin J Anal Chem 9(6):911–914

    Google Scholar 

  10. Sun C, Leong LP, Barlow PJ, Chan SH et al (2006) J Chromatogr A 1129:145–148

    Article  CAS  Google Scholar 

  11. Leepipatpiboon N, Sae-Khow O, Jayanta S (2005) J Chromatogr A 1073:331–339

    Article  CAS  Google Scholar 

  12. Coulier L, Bradley EL, Bas RC, Verhoecky KCM, Driffield M, Harmer N, Castle L (2010) J Agric Food Chem 58:4873–4882

    Article  CAS  Google Scholar 

  13. Cao X, Dufresne G, Clement G, Belisle S, Robichaud A, Beraldin F (2009) J AOAC Int 92(60):1780–1789

    CAS  Google Scholar 

  14. Zhang H, Ren Y, Bao X (2009) J Pharm Biomed 49:367–374

    Article  CAS  Google Scholar 

  15. Gruz J, Novak O, Strnad M (2008) Food Chem 111:789–794

    Article  CAS  Google Scholar 

  16. Zhang H, Xue M, Lu Y, Dai Z, Wang H (2010) J Sep Sci 33:235–243

    Article  CAS  Google Scholar 

  17. Struijs K (2008) Vincken, J-P. Gruppen, H. Rapid Commun Mass Spectrom 22:3615–3623

    Article  CAS  Google Scholar 

  18. Biesaga M, Pyrzynska K (2009) J Chromatogr A 1216:6620–6626

    Article  CAS  Google Scholar 

  19. Licea-Perez H, Wang S, Szapacs ME, Yang E (2008) Steroids 73:601–610

    Article  CAS  Google Scholar 

  20. Commission of the European Communities EC /16/2002, Off J Eur Commun. 2002, L51/27

  21. Commission of the European Communities EC/1895/2005, Off J. Eur. Commun. 2005, L302/28

  22. Cabado AG, Aldea S, Porro C, Ojea G, Lago J, Sobrado C, Vieites JM (2008) Food Chem Toxicol 46:1674–1680

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by 2010C32G2050021 project of Science Technology Department of Zhejiang Province, Y3100689 project of Zhejiang Natural Science Foundation, and the China Canned Food Industry Association (CCFIA).

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Xue, M., Zou, Y. et al. Simultaneous determination of NOGE-related and BADGE-related compounds in canned food by ultra-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 398, 3165–3174 (2010). https://doi.org/10.1007/s00216-010-4284-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4284-5

Keywords

Navigation