Skip to main content
Log in

Raman spectroscopic signature of blood and its potential application to forensic body fluid identification

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Near-infrared (NIR) Raman spectroscopy was used to measure spectra of dried human blood samples from multiple donors. Two major questions addressed in this paper involve the influence of sample heterogeneity and potential Raman spectral variations that could arise between different donors of blood. Advanced statistical analysis of spectra obtained from multiple spots on dry samples showed that dry blood is chemically heterogeneous, and its Raman spectra could be presented very well as a linear combination of a fluorescent background and two Raman spectroscopic components that are dominated by hemoglobin and fibrin, respectively. Each sample Raman spectrum contains the same major peaks, but the relative contribution of the hemoglobin and fibrin components varies with the donor. Therefore, no single spectrum could adequately represent an experimental Raman spectrum of dry blood in a quantitative way, but rather the combination of hemoglobin and fibrin spectral components could be considered to be a spectroscopic signature for blood. This proof-of-concept approach shows the potential for Raman spectroscopy to be used in forensic analysis to identify an unknown substance such as blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brettell TA, Butler JM, Almirall JR (2007) Forensic science. Anal Chem 79:4365–4384

    Article  CAS  Google Scholar 

  2. Li R (2008) Forensic biology. CRC, Boca Raton, FL

    Google Scholar 

  3. Shaler RC (2002) In Saferstein R (ed) Forensic Science Handbook. Prentice Hall, Upper Saddle River, NJ

  4. Jones Jr. EL (2005) In Saferstein R (ed) Forensic Science Handbook. Prentice Hall, Upper Saddle River, NJ

  5. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17

    Article  CAS  Google Scholar 

  6. Virkler K, Lednev IK (2008) Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci Int 181:e1–e5

    Article  Google Scholar 

  7. Virkler K, Lednev IK (2009) Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis. Anal Chem 81:7773–7777

    Article  CAS  Google Scholar 

  8. Gebel E (2009) Species in a snap: Raman analysis of blood. Anal Chem 81:7862

    Google Scholar 

  9. Virkler K, Lednev IK (2009) Raman spectroscopic signature of semen and its potential application to forensic body fluid identification, Forensic Sci Int. doi:10.1016/j.forsciint.2009.09.005

  10. Siegel J, Knupfer G, Saukko P (2000) Encyclopedia of forensic sciences. Academic, London, San Diego

    Google Scholar 

  11. Hodges CM, Akhavan J (1990) The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives. J Mol Spectrosc 46:303–307

    Google Scholar 

  12. Rodger C, Broughton D (1998) The in-situ analysis of lipsticks by surface enhanced resonance Raman scattering. Analyst 123:1823–1826

    Article  CAS  Google Scholar 

  13. Thomas J, Buzzini P, Massonnet G, Reedy B, Roux C (2005) Raman spectroscopy and the forensic analysis of black/grey and blue cotton fibres Part 1: investigation of the effects of varying laser wavelength. Forensic Sci Int 152:189–197

    Article  CAS  Google Scholar 

  14. Suzuki EM, Carrabba M (2001) In situ identification and analysis of automotive paint pigments using line segment excitation Raman spectroscopy: I. Inorganic topcoat pigments. J Forensic Sci 46:1053–1069

    CAS  Google Scholar 

  15. Mazzella WD, Buzzini P (2005) Raman spectroscopy of blue gel pen inks. Forensic Sci Int 152:241–247

    Article  CAS  Google Scholar 

  16. Coyle T, Anwar N (2008) A novel approach to condom lubricant analysis: In-situ analysis of swabs by FT-Raman spectroscopy and its effects on DNA analysis. Sci Justice. doi:10.1016/j.scijus.2008.04.003:1-11

    Google Scholar 

  17. Grasselli J (1981) Chemical applications of Raman spectroscopy. Wiley, New York

    Google Scholar 

  18. Eckenrode A, Bartick EG, Harvey S, Vucelick ME, Wright BW, Huff RA (2001) Portable Raman spectroscopy systems for field analysis. Forensic Sci Comm 3

  19. Yan F, Vo-Dinh T (2007) Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sens Actuators, B 61-66

  20. Lednev IK (2007) In Uversky VN, Permyakov EA (ed) Protein Structures, Methods in Protein Structures and Stability Analysis. Nova Science

  21. De Wael K, Lepot L, Gason F, Gilbert B (2008) In search of blood-detection of minute particles using spectroscopic methods. Forensic Sci Int 180:37–42

    Article  Google Scholar 

  22. Berger AJ, Itzkan I, Feld MS (1997) Near-infrared Raman spectroscopy of human whole blood and serum. Proc SPIE 2982:87–90

    Article  CAS  Google Scholar 

  23. Berger AJ, Brennan JF, Dasari RR, Feld MS, Itzkan I (1996) Apparatus and methods of Raman spectroscopy for analysis of blood gases and analytes. Patent No. WO 96/29925

  24. Clarke RH, Womble ME (2006) Handheld Raman blood analyzer. Raman Systems, Inc. Patent No. 20060166302

  25. Albrecht H, Breitinger D (1976) Application of the resonance Raman scattering from hemoglobin in whole human blood. Int Conf on Raman Spec

  26. Plouvier SR, Huong PV (1984) Microbial chromophore materials in circulating blood identified by laser micro Raman spectroscopy. Biorheology Suppl 1:345–347

    CAS  Google Scholar 

  27. Enjeder AMK, Koo T, Oh J, Hunter M, Sasic S, Feld MS (2002) Blood analysis by Raman spectroscopy. Opt Lett 27:2004–2006

    Article  Google Scholar 

  28. Itzkan I, Feld MS, Koo T, Berger AJ, Horowitz GL (2002) Reagentless diagnostics; Near-IR Raman spectroscopy. Biomed Diag Sci and Tech 307–321

  29. Finney WF (2002) Noninvasive in vivo tissue modulated quantitative Raman spectroscopy of human blood. Diss Abstr Int, B 2003 63:4186

    Google Scholar 

  30. Chaiken J, Ellis K, Eslick P, Piacente L, Voss E (2006) Noninvasive, in-vivo, tissue modulated Raman spectroscopy of human blood: microcirculation and viscocity effects. Proc SPIE 6093:1–11

    Google Scholar 

  31. Berger AJ, Itzkan I, Feld MS (1997) Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 53A:287–292

    Article  CAS  Google Scholar 

  32. Chaiken J, Finney WF, Knudson PE, Peterson KP, Peterson CM, Yan (2001) Noninvasive in vivo tissue and pulse modulated Raman spectroscopy of human capillary blood and plasma. Biomed Diag Guid and Surg-Ass Sys III 4254:

  33. Chaiken J, Finney WF, Peterson CM, Peterson KP, Knudson PE, Wei (2000) Noninvasive, in vivo, tissue modulated near infrared vibrational spectroscopic study of mobile and static tissues: Blood chemistry. Proc of SPIE 3918:135–143

  34. Lucassen GW, Puppels GJ (2004) Apparatus for the pH determination of blood and method therefor. Patent No. WO 2004/109267 A1

  35. Ozaki Y, Mizuno A, Sato H, Kawauchi K, Muraishi S (1992) Biomedical application of near-infrared Fourier transform Raman spectroscopy. Part I: The 1064-nm excited Raman spectra of blood and met hemoglobin. Appl Spectrosc 46:533–536

    Article  CAS  Google Scholar 

  36. Sato H, Chiba H, Tashiro H, Ozaki Y (2001) Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation. J Biomed Opt 6:366–370

    Article  CAS  Google Scholar 

  37. Wood BR, Caspers P, Puppels GJ, Pandiancherri S, McNaughton D (2007) Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal Bioanal Chem 387:1691–1703

    Article  CAS  Google Scholar 

  38. White PC, Rodger C, Rutherford V, Finnon Y, Smith WE, Fitzgerald M (1999) Surface enhanced resonance Raman scattering (SERRS) spectroscopy. A powerful technique for the forensic analysis of colourants? Proc SPIE 3576:77–86

    Article  CAS  Google Scholar 

  39. Ying SL, Man A, Harris J, Shaw RA (2005) Infrared spectroscopy of biofluids; from the research lab to the clinical lab. Proc SPIE 5969:1–10

    Article  Google Scholar 

  40. Kitamura A, Nomura F, Karatsu T (2006) Method for measuring glucose concentration in blood using infrared spectroscopy and instrument employing it. Patent No. WO 2006/011487 A1

  41. Low-Ying S, Shaw RA, Leroux M, Mantsch HH (2002) Quantitation of glucose and urea in whole blood by mid-infrared spectroscopy of dry films. Vib Spec 28:111–116

    Article  CAS  Google Scholar 

  42. Liu Q, Xu K, Jiang C (2004) Near-infrared spectroscopy in non-invasive measurement of human blood glucose. Jiguang Shengwu Xuebao 13:129–135

    CAS  Google Scholar 

  43. Ding D, Zhang HY, Wang LQ, Zhou WD, Wang XM, Shen XG (2003) Measurement and analysis of the glucose concentration of the whole blood using near-infrared spectroscopy. Jiguang Yu Hongwai 33:328–330

    CAS  Google Scholar 

  44. Liu KZ, Shi MH, Mantsch HH (2005) Molecular and chemical characterization of blood cells by infrared spectroscopy: a new optical tool in hematology. Blood Cells Mol Dis 35:404–412

    Article  CAS  Google Scholar 

  45. Soller BR (2004) Methods for non-invasive measurement of blood electrolyte concentration. UMass/Worcester Patent No. US 20040005717 A1

  46. Soller BR, Favreau J, Idwasi PO (2003) Investigation of electrolyte measurement in diluted whole blood using spectroscopic and chemometric methods. Appl Spectrosc 57:146–151

    Article  CAS  Google Scholar 

  47. Zalesskaya GA, Shakhrai SV, Kuchinskii AV (2007) Determination of the concentration of cephalosporin antibiotics in blood by infrared spectroscopy. J Appl Spectrosc 74:567–570

    Article  CAS  Google Scholar 

  48. Kimura H, Shida K (2000) Estimation of concentration of lactic acid in the blood by means of near infrared light spectroscopic method. Rikogakubu Shuho 29:41–55

    CAS  Google Scholar 

  49. Lafrance D, Lands LC, Hornby L, Rohlicek C, Burns DH (2000) Lactate measurement in whole blood using near infrared spectroscopy. Can J Anal Sci Spectrosc 45:36–40

    CAS  Google Scholar 

  50. Kuenstner JT, Norris KH, McCarthy WF (1994) Measurement of hemoglobin in unlysed blood by near-infrared spectroscopy. Appl Spectrosc 48:484–488

    Article  CAS  Google Scholar 

  51. Paunescu LA, Michalos A, Choi JH, Wolf U, Wolf M, Gratton E (2001) In vitro correlation between reduced scattering coefficient and hemoglobin concentration of human blood determined by near-infrared spectroscopy. Proc SPIE 4250:319–326

    Article  CAS  Google Scholar 

  52. Amerov AK, Chen J, Small GW, Arnold MA (2004) The influence of glucose upon the transport of light through the whole blood. Proc SPIE 5330:101–111

    Article  CAS  Google Scholar 

  53. Kawano S (2004) Analytical method and appartus for blood using near infrared spectroscopy. Bio-Oriented Technology Research Advancement Institution Patent No. US 6791674 B2

  54. Pokrovskij DG, Zin’kovskij AK, Mikhajlenko AA, Kargapolov AV (2006) Method for predicting therapeutically resistant depression in remote light craniocerebral injury period Patent No. RU 2284753 C1

  55. (2008) Curve Fitting Toolbox User’s Guide. The Mathworks, Inc., Natick, MA

  56. Wise BM, Gallagher NB, Bro R, Shaver JM, Windig W, Koch RS (2005) PLS_Toolbox 3.5 for use with Matlab. Eigenvector Research, Wenatchee

    Google Scholar 

  57. Xu M, Shashilov VA, Ermolenkov VV, Fredriksen L, Zagorevski D, Lednev IK (2007) The first step of hen egg white lysozyme fibrillation, irreversible partial unfolding, is a two-state transition. Protein Sci 16:815–832

    Article  CAS  Google Scholar 

  58. Malinowski ER (2002) Factor analysis in chemistry. Wiley, New York

    Google Scholar 

  59. (1970) Blood In Hutchins RM (ed) Encyclopaedia Britannica, Encyclopaedia Britannica

  60. Venkatesh B, Ramasamy S, Mylrajan M, Asokan R, Manoharan PT, Rifkind JM (1999) Fourier transform Raman approach to structural correlation in hemoglobin derivatives. Spectrochim Acta Part A Mol Biomol Spectrosc 55A:1691–1697

    Article  CAS  Google Scholar 

  61. Asher SA, Vickery LE, Schuster TM, Sauer K (1977) Resonance Raman spectra of methemoglobin derivatives. Selective enhancement of axial ligand vibrations and lack of an effect of inositol hexaphosphate. Biochemistry 16:5849–5856

    Article  CAS  Google Scholar 

  62. Adar F, Gouterman M, Aronowitz S (1976) Fluorescence, resonance Raman, and radiationless decay in several hemoproteins. J Phys Chem 80:2184–2190

    Article  CAS  Google Scholar 

  63. Wolberg AS (2007) Thrombin generation and fibrin clot structure. Blood Rev 21:131–142

    Article  CAS  Google Scholar 

  64. Scott EM, Ariens RAS, Grant PJ (2004) Genetic and environmental determinants of fibrin structure and function: Relevance to clinical disease. Arterioscler Thromb Vasc Biol 24:1558–1566

    Article  CAS  Google Scholar 

  65. Marx J, Hudry-Clergeon G, Capet-Antonini F, Bernard L (1979) Laser Raman spectroscopy study of bovine fibrinogen and fibrin. Biochim Biophys Acta 578:107–115

    CAS  Google Scholar 

  66. Aubrey KL, Thomas GJ Jr (1991) Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation. Biophys J 60:1337–1349

    Article  CAS  Google Scholar 

  67. Johnson CR, Ludwig M, Asher SA (1986) Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan. J Am Chem Soc 108:905–912

    Article  CAS  Google Scholar 

  68. Hu X, Spiro TG (1997) Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: mode assignments via subunit-specific isotope labeling of recombinant protein. Biochemistry 36:15701–15712

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the former Director of North East Regional Forensic Institute (NERFI), W. Mark Dale (presently at U.S. Army Criminal Investigation Laboratory), the present NERFI Director, John Hicks, and Dr. Barry Duceman, Director of Biological Science in the New York State Police Forensic Investigation Center for continued support. We also would like to acknowledge Dr. Victor Shashilov for his advice and valuable discussions. This work is supported through the Faculty Research Award Program, University at Albany, SUNY (IKL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor K. Lednev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virkler, K., Lednev, I.K. Raman spectroscopic signature of blood and its potential application to forensic body fluid identification. Anal Bioanal Chem 396, 525–534 (2010). https://doi.org/10.1007/s00216-009-3207-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3207-9

Keywords

Navigation