Skip to main content
Log in

Influence of air annealing on the microstructural, morphological, compositional, optical and electrical properties of spray deposited CuO thin films and their utility as MOM gas sensors

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

A cost-effective spray pyrolysis technique was used to deposit CuO thin films on a variety of precleaned substrates. Films were air-annealed for 1 h at 400 °C, 450 °C, and 500 °C. XRD, Raman analysis, XPS, FTIR, SEM, EDS, UV–VIS-NIR spectrophotometry, and Hall effect studies were used to analyze the structural, morphological, compositional, optical, and electrical properties of films. XPS analysis reveals the presence of Cu and O without impurities. The presence of Cu–O stretching bonds was confirmed using FTIR. The Raman spectrum reveals monoclinic structure confirming XRD results, along with the presence of micro stress in films. The elemental composition of synthesized films is analyzed using EDX spectroscopy. The optical study depicts how air annealing can easily change the porosity and dielectric constant of films. As per the Hall effect study, p-to-n type conversion occurs at 450 °C. The gas selectivity of an as-deposited CuO-based MOM (Metal-Oxide-Metal) sensor was studied at 100 °C with four different test gases: acetone, ammonia, ethanol, and nitrogen dioxide. Sensors were found to possess the highest selectivity for ethanol. The optimal operating temperature for the fabricated sensors for ethanol test gas is found to be 200 °C. The estimated recovery and response time are both short, and the sensor is stable over the entire operating temperature range. The fabricated, low-cost MOM ethanol gas sensor could be used in medical and industrial fields.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data underlying the results is available as part of the article and no additional resource data is required.

References

  1. L. Van Nang, C.M. Hung, C.T. Xuan, N. Van Duy, N.D. Hoa, Preparation and gas sensing properties of rGO/CuO nanocomposites. ECS J. Solid State Sci. Technol. 11(3), 035009 (2022). https://doi.org/10.1149/2162-8777/ac5c7f

    Article  CAS  Google Scholar 

  2. J. Zhang, S. Ma, B. Wang, S. Pei, Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor. J. Alloy. Compd. 886, 161299 (2021). https://doi.org/10.1016/j.jallcom.2021.161299

    Article  CAS  Google Scholar 

  3. I.S. Yahia, A.A.M. Farag, S. El-Faify, F. Yakuphanoglu, A.A. Al-Ghamdi, Synthesis, optical constants, optical dispersion parameters of CuO nanorods. Optik 127(3), 1429–1433 (2016). https://doi.org/10.1016/j.ijleo.2015.10.021

    Article  CAS  Google Scholar 

  4. C.C. Hsu, C.H. Wu, S.Y. Wang, Low power deposition of the polycrystalline CuxO film with a high mobility and a low hole concentration by radio-frequency magnetron sputtering of a Cu2O target. J. Alloy. Compd. 663, 262–269 (2016). https://doi.org/10.1016/j.jallcom.2015.12.112

    Article  CAS  Google Scholar 

  5. S. Baturay, A. Tombak, D. Kaya, Y.S. Ocak, M. Tokus, M. Aydemir, T. Kilicoglu, Modification of electrical and optical properties of CuO thin films by Ni doping. J. Sol-Gel. Sci. Technol. 78, 422–429 (2016). https://doi.org/10.1007/s10971-015-3953-4

    Article  CAS  Google Scholar 

  6. T. Maruyama, Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Sol. Energy Mater. Sol. Cells 56(1), 85–92 (1998). https://doi.org/10.1016/S0927-0248(98)00128-7

    Article  CAS  Google Scholar 

  7. V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, ... E. Fortunato, Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl. Surf. Sci. 254(13), 3949–3954 (2008) https://doi.org/10.1016/j.apsusc.2007.12.019

  8. M. Eslamian, Spray-on thin film PV solar cells: advances, potentials and challenges. Coatings 4(1), 60–84 (2014). https://doi.org/10.3390/coatings4010060

    Article  CAS  Google Scholar 

  9. N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf, M. Poulain, ZnO thin films deposition by spray pyrolysis: influence of precursor solution properties. Curr. Appl. Phys. 12(5), 1283–1287 (2012). https://doi.org/10.1016/j.cap.2012.03.012

    Article  Google Scholar 

  10. F. Zahedi, R.S. Dariani, S.M. Rozati, Effect of substrate temperature on the properties of ZnO thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. 16(2), 245–249 (2013). https://doi.org/10.1016/j.mssp.2012.11.005

    Article  CAS  Google Scholar 

  11. W. Naffouti, T.B. Nasr, A. Mehdi, N. Kamoun-Turki, Effect of sprayed solution flow rate on the physical properties of anatase TiO 2 thin films. J. Electron. Mater. 43, 4033–4040 (2014). https://doi.org/10.1007/s11664-014-3341-9

    Article  CAS  Google Scholar 

  12. R.J. Deokate, A.V. Moholkar, G.L. Agawane, S.M. Pawar, J.H. Kim, K.Y. Rajpure, Studies on the effect of nozzle-to-substrate distance on the structural, electrical and optical properties of spray deposited CdIn2O4 thin films. Appl. Surf. Sci. 256(11), 3522–3530 (2010). https://doi.org/10.1016/j.apsusc.2009.12.102

    Article  CAS  Google Scholar 

  13. V. Saravanan, P. Shankar, G.K. Mani, J.B.B. Rayappan, Growth and characterization of spray pyrolysis deposited copper oxide thin films: Influence of substrate and annealing temperatures. J. Anal. Appl. Pyrol. 111, 272–277 (2015). https://doi.org/10.1016/j.jaap.2014.08.008

    Article  CAS  Google Scholar 

  14. F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 147(3), 987–995 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.047

    Article  CAS  Google Scholar 

  15. A.S. Ethiraj, D.J. Kang, Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7, 1–5 (2012). https://doi.org/10.1186/1556-276X-7-70

    Article  CAS  Google Scholar 

  16. D. Zhu, L. Wang, W. Yu, H. Xie, Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci Rep 8(1), 5282 (2018). https://doi.org/10.1038/s41598-018-23174-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. B. Jos, K.J. Saji, E.I. Anila, Effect of substrate temperature on properties of copper oxide thin films coated by spray pyrolysis. J. Mines Metals Fuels 71(1) (2023) https://doi.org/10.18311/jmmf/2023/33351

  18. P. Vomáčka, V. Štengl, J. Henych, M. Kormunda, Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B. J. Colloid Interface Sci. 481, 28–38 (2016). https://doi.org/10.1016/j.jcis.2016.07.026

    Article  CAS  PubMed  Google Scholar 

  19. G.A. Artioli, A. Mancini, V.R. Barbieri, M.C. Quattrini, E. Quartarone, M.C. Mozzati, L. Malavasi, Correlation between deposition parameters and hydrogen production in CuO nanostructured thin films. Langmuir 32(6), 1510–1520 (2016). https://doi.org/10.1021/acs.langmuir.5b03917

    Article  CAS  PubMed  Google Scholar 

  20. N. Jhansi, D. Balasubramanian, R. Raman, Investigation on structural, optical and electrical behaviours of Sn doped copper oxide thin films and fabrication of diode. J. Mater. Sci.: Mater. Electron. 34(17), 1369 (2023). https://doi.org/10.1007/s10854-023-10623-3

    Article  CAS  Google Scholar 

  21. C. Xu, Y. Liu, G. Xu, G. Wang, Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor. Mater. Res. Bull. 37(14), 2365–2372 (2002). https://doi.org/10.1016/S0025-5408(02)00848-6

    Article  CAS  Google Scholar 

  22. J. Chastain, R.C. King Jr., Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp. 40, 221 (1992)

    Google Scholar 

  23. Z.S. Hong, Y. Cao, J.F. Deng, A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater. Lett. 52(1–2), 34–38 (2002). https://doi.org/10.1016/S0167-577X(01)00361-5

    Article  CAS  Google Scholar 

  24. R.A. Zarate, F. Hevia, S. Fuentes, V.M. Fuenzalida, A. Zuniga, Novel route to synthesize CuO nanoplatelets. J. Solid State Chem. 180(4), 1464–1469 (2007). https://doi.org/10.1016/j.jssc.2007.01.040

    Article  CAS  Google Scholar 

  25. G. Carraro, C. Maccato, A. Gasparotto, T. Montini, S. Turner, O.I. Lebedev, ... P. Fornasiero, Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs. Adv. Funct. Mater. 24(3), 372–378. (2014) https://doi.org/10.1002/adfm.201302043

  26. D.K. Zhong, J. Sun, H. Inumaru, D.R. Gamelin, Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc. 131(17), 6086–6087 (2009). https://doi.org/10.1021/ja9016478

    Article  CAS  PubMed  Google Scholar 

  27. M.P. Marder, Condensed matter physics, 2nd edition. p 992. John Wiley & Sons, 2010.

  28. F. Parmigiani, L. Sangaletti, The Cu2p X-ray photoelectron core-lines in copper oxide based high temperature superconductors. J. Electron Spectrosc. Relat. Phenom. 66(3–4), 223–239 (1994). https://doi.org/10.1016/0368-2048(93)01854-8

    Article  CAS  Google Scholar 

  29. I. Platzman, R. Brener, H. Haick, R. Tannenbaum, Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C 112(4), 1101–1108 (2008). https://doi.org/10.1021/jp076981k

    Article  CAS  Google Scholar 

  30. J.Y. Park, K.A. Lim, R.D. Ramsier, Y.C. Kang, Spectroscopic and morphological investigation of copper oxide thin films prepared by magnetron sputtering at various oxygen ratios. Bull. Korean Chem. Soc. 32(9), 3395–3399 (2011). https://doi.org/10.5012/bkcs.2011.32.9.3395

    Article  CAS  Google Scholar 

  31. N. Kumar, S.S. Parui, S. Limbu, D.K. Mahato, N. Tiwari, R.N. Chauhan, Structural and optical properties of sol–gel derived CuO and Cu2O nanoparticles. Mater. Today: Proc. 41, 237–241 (2021). https://doi.org/10.1016/j.matpr.2020.08.800

    Article  CAS  Google Scholar 

  32. B. Balamurugan, B.R. Mehta, D.K. Avasthi, F. Singh, A.K. Arora, M. Rajalakshmi, G. Raghavan, S. Tyagi, S.M. Shivaprasad, Modifying the nanocrystalline characteristics—structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J. Appl. Phys. 92(6), 3304–3310 (2002). https://doi.org/10.1063/1.1499752

    Article  CAS  Google Scholar 

  33. K. Draou, N. Bellakhal, B.G. Cheron, J.L. Brisset, Heat transfer to metals In low pressure oxygen plasma: application to oxidation of the 90Cu–10Zn alloy. Mater. Chem. Phys. 58(3), 212–220 (1999). https://doi.org/10.1016/S0254-0584(98)00268-5

    Article  CAS  Google Scholar 

  34. M.R. Johan, M.S.M. Suan, N.L. Hawari, H.A. Ching, Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Int. J. Electrochem. Sci, 6(12), 6094–6104. Int. J. Electrochem. Sci., 6, 6094 – 6104. (2011) http://www.electrochemsci.org/papers/vol6/6126094.pdf

  35. J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, et al., J. Raman Spectrosc. 30 43.(1999) https://doi.org/10.1002/(SICI)1097-4555(199905)30:5%3C413::AIDJRS387%3E3.0.CO;2-N

  36. O. Diachenko, J. Kováč Jr., O. Dobrozhan, P. Novák, J. Kováč, J. Skriniarova, A. Opanasyuk, Structural and optical properties of CuO thin films synthesized using spray pyrolysis method. Coatings 11(11), 1392 (2021). https://doi.org/10.3390/coatings11111392

    Article  CAS  Google Scholar 

  37. B. Balamurugan, B.R. Mehta, D.K. Avasthi, F. Singh, A.K. Arora, M. Rajalakshmi, S.M. Shivaprasad, Modifying the nanocrystalline characteristics—structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J. Appl. Phys. 92(6), 3304–3310 (2002). https://doi.org/10.1063/1.1499752

    Article  CAS  Google Scholar 

  38. V. Muralikrishnan, H. Liu, L. Yang, B. Conry, C.J. Marvel, M.P. Harmer, ... R. Krause, Observations of unexpected grain boundary migration in SrTiO3. Scripta Mater. 222, 115055 (2023) https://doi.org/10.1016/j.scriptamat.2022.115055

  39. R. Aydın, A. Akkaya, O. Kahveci, B. Şahin, Nanostructured CuO thin-film-based conductometric sensors for real-time tracking of sweat loss. ACS Omega (2023). https://doi.org/10.1021/acsomega.3c02232

    Article  PubMed  PubMed Central  Google Scholar 

  40. M.A. Baba, A. Gasim, A.M. Awadelgied, N.A. Almuslet, A.M. Salih, Influence of the annealing temperature on the thickness and roughness of La2Ti2O7 thin films. Adv. Mater. Phys. Chem. 10(08), 189–198 (2020). https://doi.org/10.4236/ampc.2020.108014

    Article  CAS  Google Scholar 

  41. L. Cui, G.G. Wang, H.Y. Zhang, R. Sun, X.P. Kuang, J.C. Han, Effect of film thickness and annealing temperature on the structural and optical properties of ZnO thin films deposited on sapphire (0001) substrates by sol–gel. Ceram. Int. 39(3), 3261–3268 (2013). https://doi.org/10.1016/j.ceramint.2012.10.014

    Article  CAS  Google Scholar 

  42. D. Mahana, A.K. Mauraya, P. Singh, S.K. Muthusamy, Evolution of CuO thin films through thermal oxidation of Cu films prepared by physical vapour deposition techniques. Solid State Commun. 366, 115152 (2023). https://doi.org/10.1016/j.ssc.2023.115152

    Article  CAS  Google Scholar 

  43. M.H. Kabir, M. Hafiz, S. Rahman, M. Saifur Rahman, H. Rahman, M.M. Rashid, ... M.S. Rahman, Effect of Ga doping on structural, morphological, optical and electrical properties of CuO thin films deposited by spray pyrolysis technique. J. Mater. Sci.: Mater. Electron. 34(16), 1258 (2023) https://doi.org/10.1007/s10854-023-10711-4

  44. D.N. Oosthuizen, D.E. Motaung, A.M. Strydom, H.C. Swart, Underpinning the interaction between NO2 and CuO nanoplatelets at room temperature by tailoring synthesis reaction base and time. ACS Omega 4(19), 18035–18048 (2019). https://doi.org/10.1021/acsomega.9b01882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. N. Wang, W. Tao, X. Gong, L. Zhao, T. Wang, L. Zhao, ... G. Lu, Highly sensitive and selective NO2 gas sensor fabricated from Cu2O-CuO microflowers. Sensors Actuators B: Chem. 362, 131803 (2022) https://doi.org/10.1016/j.snb.2022.131803

  46. Y. Tan, J. Zhang, Highly sensitive ethanol gas sensors based on Co-doped SnO2 nanobelts and pure SnO2 nanobelts. Physica E 147, 115604 (2023). https://doi.org/10.1016/j.physe.2022.115604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge “INUP, Indian Institute of Science, Bangalore” for providing characterization and device testing facilities and “The Central Research Facilities, Centre for Nano and Soft Matter Sciences, Bengaluru” for providing characterization facilities.

The authors also thank the Principals of J S S Academy of Technical Education, Bangalore, Government College for Women (Autonomous), Mandya, and Global Academy of Technology, Bangalore for their kind support and encouragement.

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mr. Madhukeswara R S, Dr. Shashidhar R, Dr. Raghu A and Mr. Prakasha G S. The first draft of the manuscript was written by Mr. Madhukeswara R S. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to R. S. Madhukeswara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhukeswara, R.S., Shashidhar, R., Raghu, A. et al. Influence of air annealing on the microstructural, morphological, compositional, optical and electrical properties of spray deposited CuO thin films and their utility as MOM gas sensors. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00738-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00738-6

Keywords

Navigation