Skip to main content
Log in

Investigation of polynuclear Zr(IV) hydroxide complexes by nanoelectrospray mass-spectrometry combined with XAFS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polynuclear species of zirconium in acidic aqueous solution are investigated by combining X-ray absorption spectroscopy (XAFS) and nanoelectrospray mass spectrometry (ESI-MS). Species distributions are measured between pHC 0 and pHC 3 for [Zr] = 1.5–10 mM. While the monomer remains a minor species, with increasing pH the degree of polymerization increases and the formation of tetramers, pentamers, octamers, and larger polymers is observed. The high resolution of the mass spectrometer permits the unambiguous determination of polynuclear zirconium hydroxide complexes by means of their isotopic patterns. The relative abundances of mononuclear and polynuclear species present simultaneously in solution are measured, even if one of the species contributes only 0.1% of the Zr concentration. For the first time it has been directly observed that the hydrolysis of polynuclear Zr species is a continuous process which leads to charge compensation through the sequential substitution of water molecules by hydroxide ligands until doubly charged polymers dominate at conditions (H+ and Zr concentrations) close to the solubility of Zr(OH)4(am). The invasiveness of the electrospray process was minimized by using very mild declustering conditions, leaving the polynuclear species within a solvent shell of approximately 20 water molecules.

Schematic Diagram of Multiplexed Measurement of 9 Anti-Nuclear Antibodies Using the AtheNa Multilyte Assay

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rose J, Bruin TJMD, Chauveteau G, Tabary R, Hazemann JL, Proux O, Omari A, Toulhoat H, Bottero JY (2003) J Phys Chem B 107:2910–2920

    Article  CAS  Google Scholar 

  2. Chiavacci LA, Santilli CV, Pulcinelli SH, Bourgaux C, Briois V (2004) Chem Mater 16:3995–4004

    Article  CAS  Google Scholar 

  3. Curti E, Degueldre C (2002) Radiochim Acta 90:801–804

    Article  CAS  Google Scholar 

  4. Brown P, Curti E, Grambow B, Ekberg C, Mompean F, Perrone J, Illemassene M (2005) Chemical thermodynamics of zirconium (Chemical Thermodynamics Series vol. 8). OECD/Elsevier, Amsterdam

  5. Blumenthal W (1958) The chemical behavior of zirconium. van Nostrand, Princeton, NJ

  6. Clearfield A, Vaughan PA (1956) Acta Crystallogr 9:555–558

    Article  CAS  Google Scholar 

  7. Peter D, Ertel T, Bertagnolli H (1994) J Sol-Gel Sci Tec 3:91–99

    Article  CAS  Google Scholar 

  8. Helmerich A, Raether F, Peter D, Bertagnolli H (1994) J Mat Sci 29:1388–1393

    Article  CAS  Google Scholar 

  9. Turrilas X, Barnes P, Gascoigne JD, Turner JZ, Jones SL, Norman CJ, Pygall CF, Dent AJ (1995) Radiat Phys Chem 45:491–508

    Article  Google Scholar 

  10. Hu MZC, Zielke JT, Lin JS, Byers CH (1999) J Mat Res 14:103–113

    CAS  Google Scholar 

  11. Southon PD, Bartlett JR, Woolfrey JL, Ben-Nissan B (2002) Chem Mat 14:4313–4319

    Article  CAS  Google Scholar 

  12. Hagfeldt C, Kessler V, Persson I (2004) Dalton Trans 14:2142–2151

    Article  CAS  Google Scholar 

  13. Cho H, Walther C, Rothe J, Neck V, Denecke M, Dardenne K, Fanghänel T (2005) Anal Bioanal Chem 383:28–40

    Article  CAS  Google Scholar 

  14. Singhal A, Toth LM, Lin JS, Affholter K (1996) J Am Chem Soc 118:11529–11534

    Article  CAS  Google Scholar 

  15. Connick RE, Reas WH (1951) J Am Chem Soc 73:1171–1176

    Article  CAS  Google Scholar 

  16. Zielen A, Connick R (1956) J Am Chem Soc 78:5785–5792

    Article  CAS  Google Scholar 

  17. Pokras L (1956) J Chem Edu 33:152–161

    CAS  Google Scholar 

  18. Tribalat S, Schriver L (1975) Bull Soc Chim Fr 9:2012–2014

    Google Scholar 

  19. Tulock JJ, Blanchard GJ (2002) J Phys Chem B 106:3568–3575

    Article  CAS  Google Scholar 

  20. Johnson JS, Kraus KA (1956) J Am Chem Soc 78:3937–3943

    Article  CAS  Google Scholar 

  21. Angstadt R, Tyree S (1962) J Inorg Nucl Chem 24:913–917

    Article  Google Scholar 

  22. Bilinski H, Branica M, Sillen L (1966) Acta Chem Scand 20:853–861

    Article  CAS  Google Scholar 

  23. Bertin F, Bouix J, Hannane S, Paris J (1987) R Acad Sci Ser II 304:405–410

    Google Scholar 

  24. Aberg M, Glaser J (1993) Inorg Chim Acta 206:53–61

    Article  CAS  Google Scholar 

  25. Veyland A (1999) Propriétés thermodynamiques, cinétiques et structurales de complexes simples et mixtes du zirconium(IV) avec les ions hydroxyle et carbonate. Ph.D. thesis, Univ. Reims Champagne-Ardenne

  26. Dole M, Mack L, Hines R, Mobley R, Ferguson L, Alice M (1968) J Chem Phys 49:2240–2249

    Article  CAS  Google Scholar 

  27. Yamashita M, Fenn J (1984) J Phys Chem 88:4451–4459

    Article  CAS  Google Scholar 

  28. Fenn J (2002) J Biomol Tech 13:101–118

    CAS  Google Scholar 

  29. Cole R (1997) Electrospry ionization mass spectrometry. Wiley, New York

    Google Scholar 

  30. Pramanik B, Ganguly A, Gross M (2002) Applied electrospray mass spectrometry. Marcel Dekker, New York

    Google Scholar 

  31. Agnes GR, Horlick G (1995) Appl Spectr 49:324–334

    Article  CAS  Google Scholar 

  32. Rosen AL, Hieftje GM (2004) Spectrochim Acta B 59:135–146

    Article  CAS  Google Scholar 

  33. Gross J (2004) Mass spectrometry: a textbook. Springer, Berlin

  34. Stewart I (1999) Spectrochim Acta B 54:1649–1695

    Article  Google Scholar 

  35. Stewart I, Horlick G (1996) J Anal Atom Spectrosc 11:1203–1214

    Google Scholar 

  36. Rodriguez-Cruz S, Jockusch R, Williams E (1999) J Am Chem Soc 121:8898–8906

    Article  CAS  Google Scholar 

  37. Sarpola A, Hietapelto V, Jalonen J, Jokela J, Laitinen RS, Ramo J (2004) J Mass Spectr 39:1209–1218

    Article  CAS  Google Scholar 

  38. Sarpola A, Hietapelto V, Jalonen J, Jokela J, Laitinen RS (2004) J Mass Spectr 39:423–430

    Article  CAS  Google Scholar 

  39. Hellmann H, Laitinen RS, Kaila L, Jalonen J, Hietapelto V, Jokela J, Sarpola A, Rämö J (2006) J Mass Spect 41:1421–1429

    Google Scholar 

  40. Peschke M, Blades AT, Kebarle P (1999) Int J Mass Spectr 187:685–699

    Article  Google Scholar 

  41. Blades AT, Peschke M, Verkerk UH, Kebarle P (2004) J Am Chem Soc 126:11995–12003

    Article  CAS  Google Scholar 

  42. Hartke B, Charvat A, Reich M, Abel B (2002) J Chem Phys 116:3588–3600

    Article  CAS  Google Scholar 

  43. Moulin C (2003) Radiochim Acta 91:651–657

    Article  CAS  Google Scholar 

  44. Plancque G, Maurice Y, Moulin V, Toulhoat P, Moulin C (2005) Appl Spectr 59:432–441

    Article  CAS  Google Scholar 

  45. Vercouter T, Amekraz B, Moulin C, Giffaut E, Vitorge P (2005) Inorg Chem 44:7570–7581

    Article  CAS  Google Scholar 

  46. Moulin C, Charron N, Plancque G, Virelizier H (2000) Appl Spectr 54:843–848

    Article  CAS  Google Scholar 

  47. Moulin C, Amekraz B, Hubert S, Moulin V (2001) Anal Chim Acta 441:269–279

    Article  CAS  Google Scholar 

  48. Moulin C, Amekraz B, Colette S, Doizi D, Jacopin C, Lamouroux C, Plancque G (2006) J Alloys Comp 408:1242–1245

    Article  CAS  Google Scholar 

  49. Lamouroux C, Moulin C, Tabet JC, Jankowski CK (2000) Rapid Comm Mass Spectr 14:1869–1877

    Article  CAS  Google Scholar 

  50. Veyland A, Dupont L, Pierrard JC, Rimbault J, Aplincourt M, Devoldere L (2000) Inorg Chem Comm 3:600–607

    Article  CAS  Google Scholar 

  51. Lover T, Henderson W, Bowmaker GA, Seakins JM, Cooney RP (1997) J Mat Chem 7:1553–1558

    Article  CAS  Google Scholar 

  52. Bergmann T, Martin TP, Schaber H (1989) Rev Sci Instrum 60:347–349

    Article  CAS  Google Scholar 

  53. Bergmann T, Martin TP, Schaber H (1990) Rev Sci Instrum 61:2592–2600

    Article  CAS  Google Scholar 

  54. Bergmann T, Goehlich H, Martin TP, Schaber H, Malegiannakis G (1990) Rev Sci Instrum 61:2585–2591

    Article  CAS  Google Scholar 

  55. Denecke MA, Dardenne K, Marquardt CM (2005) Talanta 65:1008–1014

    Article  CAS  Google Scholar 

  56. Sayers D, Bunker B (1988) In: Koningsberger DC, Prins R (eds) X-ray absorption: techniques of EXAFS, SEXAFS and XANES. Wiley, New York, pp 211–253

    Google Scholar 

  57. Ravel B, Newville M (2006) EXAFS analysis software: ATHENA. Accessed 13 March 2007. http://cars9.uchicago.edu/~ravel/software/aboutathena.html

  58. Stern EA, Newville M, Ravel B, Yacoby Y, Haskel D (1995) Physica B 209:117–120

    Article  Google Scholar 

  59. Mak C (1967) Can J Chem 46:3491–3497

    Google Scholar 

  60. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576

    Article  CAS  Google Scholar 

  61. Ankudinov AL, Rehr JJ (1997) Phys Rev B 56:1712–1728

    Article  Google Scholar 

  62. Lee P, Citrin P, Eisenberger P, Kincaid B (1981) Rev Mod Phys 53:769–806

    Article  CAS  Google Scholar 

  63. Kovalenko P, Bagdasarov K (1961) Russ J Inorg Chem 6:272–275

    Google Scholar 

  64. Adair J, Denkewicz R, Arriagada F (1987) Ceramic Trans 1:135–145

    Google Scholar 

  65. Ekberg C, Kallvenius G, Albinsson Y, Brown PL (2004) J Sol Chem 33:47–79

    Article  CAS  Google Scholar 

  66. Muha GM, Vaughan PA (1960) J Chem Phys 33:194–199

    Article  CAS  Google Scholar 

  67. Li P, Chen IW, Pennerhahn JE (1993) Phys Rev B 48:10063–10073

    Article  CAS  Google Scholar 

  68. Rothe J, Walther C, Denecke MA, Fanghänel T (2004) Inorg Chem 43:4708–4718

    Article  CAS  Google Scholar 

  69. Conradson SD, Begg BD, Clark DL, den Auwer C, Ding M, Dorhout PK, Espinosa-Faller FJ, Gordon PL, Haire RG, Hess NJ, Hess RF, Keogh DW, Lander GH, Manara D, Morales LA, Neu MP, Paviet-Hartmann P, Rebizant J, Rondinella VV, Runde W, Tait CD, Veirs DK, Villella PM, Wastin F (2005) J Solid State Chem 178:521–535

    Article  CAS  Google Scholar 

  70. Iribarne J, Thomson B (1976) J Chem Phys 64:2287–2294

    Article  CAS  Google Scholar 

  71. Zhou SL, Cook KD (2000) Anal Chem 72:963–969

    Article  CAS  Google Scholar 

  72. Wilm M, Mann M (1996) Anal Chem 68:1–8

    Article  CAS  Google Scholar 

  73. Wortmann A, Kister-Momotova A, Wilhelm O, Zenobi R (2005) In: ANAKON 05, 15–18 March 2005, Regensburg, Germany

  74. Neck V, Kim JI (2001) Radiochim Acta 89:1–16

    Article  CAS  Google Scholar 

  75. Zhou SL, Edwards AG, Cook KD, Van Berkel GJ (1999) Anal Chem 71:769–776

    Google Scholar 

  76. Zhou SL, Prebyl BS, Cook KD (2002) Anal Chem 74:4885–4888

    Google Scholar 

  77. Van Berkel GJ, Asano KG, Schnier PD (2001) J Am Soc Mass Spectr 12:853–862

    Google Scholar 

  78. Grenthe I, Wanner H, Östhols E (2000) Guidelines for the extrapolation to zero ionic strength (Chemical Thermodynamics Series vol. 2). Elsevier, Amsterdam

    Google Scholar 

  79. Metivier H, Guillaumont R (1972) Radiochem Radioanal Lett 10:27–35

    CAS  Google Scholar 

  80. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  81. Moriyama H, Sasaki T, Kobayashi T, Takagi I (2005) J Nucl Sci Tech 42:626–635

    CAS  Google Scholar 

  82. Moriyama H, Sasaki T, Kobayashi T, Takagi I (2006) J Alloys Comp 408:1302–1306

    Article  CAS  Google Scholar 

  83. Nabivanets B (1962) Russ J Inorg Chem 7:609–611

    Google Scholar 

  84. Lister B, McDonald L (1952) J Chem Soc 4315–4330

  85. Sasaki T, Kobyashi T, Takagi I, Moriyama H (2006) Radiochim Acta 94:489–494

    Article  CAS  Google Scholar 

  86. Schindler P, Althau H, Hofer F, Minder W (1965) Helvet Chim Acta 48:1204–1215

    Article  CAS  Google Scholar 

  87. Schindler P (1967) Adv Chem Ser 67:196–221

    Article  Google Scholar 

  88. Sasaki T, Kobayashi T, Takagi I, Moriyama H (2005) In: Actinides 2005—Recent Advances in Actinide Science, 4–8 July 2005, Manchester, UK

  89. Ciavatta L (1980) Ann Chim (Rome) 70:551–562

    CAS  Google Scholar 

  90. Grenthe I, Fuger J, Konings R, Lemire R, Muller A, Nguyen-Trung C, Wanner H (1992) Chemical thermodynamics of uranium (Chemical Thermodynamics Series, vol. 1). OECD/Elsevier, Amsterdam

    Google Scholar 

  91. Neck V, Kim J, Seidel B, Marquardt C, Dardenne K, Jensen M, Hauser W (2001) Radiochim Acta 89:439–446

    Article  CAS  Google Scholar 

  92. Neck V, Kim JI (2000) Radiochim Acta 88:815–822

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Walther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, C., Rothe, J., Fuss, M. et al. Investigation of polynuclear Zr(IV) hydroxide complexes by nanoelectrospray mass-spectrometry combined with XAFS. Anal Bioanal Chem 388, 409–431 (2007). https://doi.org/10.1007/s00216-007-1223-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1223-1

Keywords

Navigation