Skip to main content
Log in

Combined LIBD and XAFS investigation of the formation and structure of Zr(IV) colloids

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The solubility of Zr(OH)4(am)—in other words hydrated Zr(IV) oxyhydroxide—is determined by means of coulometric titration (CT), and colloids are detected by laser-induced breakdown when the solubility limit is exceeded. Our results at pH 3–8 demonstrate that the solubility of Zr(OH)4(am) is several orders of magnitude higher than reported classical solubility data for acidic solutions, determined from undersaturation with a less soluble microcrystalline Zr(IV) oxide precipitate. Analysis of extended X-ray absorption fine structure (EXAFS) data shows that the microcrystalline colloids in a 0.1 mol l−1 Zr aqueous solution at pH 0.2 contain tetrameric units, similar to those present in the structure of ZrOCl2.8H2O. Characterization of the CT solutions by means of EXAFS shows that oligomeric species form as the solubility limit is approached. The current lack of data on equilibrium constants for polynuclear hydroxide complexes prohibits the use of a realistic speciation model to describe the solubility of pH-dependent Zr(OH)4(am). However, the solubility curve is obtained using the mononuclear hydrolysis constants estimated in the present paper, along with the solubility constant (logKsp=−49.9±0.5 in 0.5 mol l−1 NaCl; logK°sp=−53.1±0.5 at I=0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–b
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Cartesian coordinates for atoms up to 6 Å are calculated using the crystal structure in [26] and HfO2 unit cell dimensions are taken from [27]

  2. Calculated for the Fm3m space group; a=5.09 Å

References

  1. Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T (2002) Radiochim Acta 90:805–813

    Article  CAS  Google Scholar 

  2. Ekberg C, Kallvenius G, Albinsson Y, Brown PL (2004) J Solution Chem 33:47–79

    Article  CAS  Google Scholar 

  3. Curti E, Degueldre C (2002) Radiochim Acta 90:801–804

    Article  CAS  Google Scholar 

  4. Neck V, Müller R, Bouby M, Altmaier M, Rothe J, Denecke MA, Kim JI (2002) Radiochim Acta 90:485–494

    Article  CAS  Google Scholar 

  5. Cho H-R, Walther C, Neck V, Fanghänel T (2004) unpublished results

  6. Kovalenko PN, Bagdasarov KN (1961) Russ J Inorg Chem 6:272–275

    Google Scholar 

  7. Ciavatta L (1980) Ann Chim (Rome) 70:551

    CAS  Google Scholar 

  8. Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H (1992) Chemical thermodynamics of uranium. Elsevier, Amsterdam

    Google Scholar 

  9. Neck V, Kim JI (2001) Radiochim Acta 89:1–16

    Article  CAS  Google Scholar 

  10. Neck V, Kim JI (2000) Radiochim Acta 88:815–822

    Article  CAS  Google Scholar 

  11. Shannon RD (1976) Acta Cryst 32:751

    Article  Google Scholar 

  12. Neck V, Kim JI, Seidel BS, Marquardt CM, Dardenne K, Jensen MP, Hauser W (2001) Radiochim Acta 89:1–8

    Article  CAS  Google Scholar 

  13. Neck V, Altmaier M, Müller R, Bauer A, Fanghänel T, Kim JI (2003) Radiochim Acta 91:253–262

    Article  CAS  Google Scholar 

  14. Bitea C, Müller R, Neck V, Walther C, Kim JI (2003) Colloids Surf A 217:63–70

    Article  CAS  Google Scholar 

  15. Scherbaum FJ, Knopp R, Kim JI (1996) Appl Phys B 63:299–306

    CAS  Google Scholar 

  16. Kitamori T, Yokose K, Sakagami M, Sawada T (1989) Jpn J Appl Phys 28:1195–1198

    Article  CAS  Google Scholar 

  17. Walther C, Cho H-R, Fanghänel T (2004) Appl Phys Lett 85:6329–6331

    Article  CAS  Google Scholar 

  18. Walther C, Bitea C, Hauser W, Kim JI, Scherbaum FJ (2002) Nucl Instrum Meth B 195:374–388

    Article  CAS  Google Scholar 

  19. Denecke MA, Rothe J, Dardenne K, Blank H, Hormes J (2005) Phys Scr T115:1001

    Article  Google Scholar 

  20. Sayers DE, Bunker BA (1988) In: Koningsberger DC, Prins R (eds) X-ray absorption: techniques of EXAFS, SEXAFS and XANES. Wiley, New York, pp 211–253

    Google Scholar 

  21. Ressler T (1997) J Phys IV 7-C2:269

    Article  CAS  Google Scholar 

  22. Stern EA, Newville M, Ravel B, Yacoby Y, Haskel D (1995) Physica B 208/209:117–120

    Article  Google Scholar 

  23. Gualtieri A, Norby P, Hanson J, Hriljac J (1996) J Appl Cryst 29:707–713

    Article  CAS  Google Scholar 

  24. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576

    Article  CAS  Google Scholar 

  25. Ankudinov AL, Rehr JJ (1997) Phys Rev B 56:1712

    Article  Google Scholar 

  26. Smith DK, Newkirk HW (1965) Acta Cryst 18:983–991

    Article  CAS  Google Scholar 

  27. Adam J, Rodgers MD (1959) Acta Cryst 12:951

    Article  CAS  Google Scholar 

  28. Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Rev Mod Phys 53:769–806

    Article  CAS  Google Scholar 

  29. Newville M (1995) FEFFIT—using FEFF to model XAFS data. Department of Physics, FM-15, University of Washington, Seattle, WA

  30. Mak TCW (1967) Can J Chem 46:3491–3497

    Google Scholar 

  31. Denecke MA, Geckeis H, Pohlmann C, Rothe J, Degering D (2000) Radiochim Acta 88:639–643

    Article  CAS  Google Scholar 

  32. Degueldre C, Pfeiffer H-R, Alexander W, Wernli B, Bruetsch R (1996) Appl Geochem 11:677–695

    Article  CAS  Google Scholar 

  33. Li P, Chen I-W, Penner-Hahn JE (1993) Phys Rev B 48(14):10063–10073

    Article  CAS  Google Scholar 

  34. Rothe J, Denecke MA, Neck V, Müller R, Kim JI (2002) Inorg Chem 41:249–258

    Article  PubMed  CAS  Google Scholar 

  35. Rothe J, Walther C, Denecke MA, Fanghänel Th (2004) Inorg Chem 43:4708–4718

    Article  PubMed  CAS  Google Scholar 

  36. Winterer M (2000) J Appl Phys 88:5635–5644

    Article  CAS  Google Scholar 

  37. Singhal A, Toth LM, Lin JS, Affholter K (1996) J Am Chem Soc 118:11529–11534

    Article  CAS  Google Scholar 

  38. Hagfeldt C, Kessler V, Persson I (2004) Dalton Trans 2142–2151

  39. Muha GM, Vaughan PA (1960) J Chem Phys 33:194–199

    Article  CAS  Google Scholar 

  40. Southton PD, Bartlett JR, Woolfrey JL, Ben-Nissan B (2002) Chem Mater 14:4313–4319

    Article  CAS  Google Scholar 

  41. Zyuzin DA, Moroz EM, Ivanova AS, Shmakov AN, Kustova GN (2004) Kinet Catal 45(5):780–783

    Article  Google Scholar 

  42. Ohtaka O, Yamanaka T, Kume S, Hara N, Asano H, Izumi F (1990) Proc Jpn Acad B 66:193

    CAS  Google Scholar 

  43. Teufer G (1962) Acta Cryst 15:1187

    Article  CAS  Google Scholar 

  44. MacDermott TE (1973) Coord Chem Rev 11:1–20

    Article  CAS  Google Scholar 

  45. Adair JH, Denkewicz RP, Arriagada FJ (1987) Ceram Trans 1:135–145

    Google Scholar 

  46. Bilinski H, Branica M, Sillen LG (1966) Acta Chem Scand 20:853–861

    CAS  Google Scholar 

  47. Bundschuh T, Knopp R, Müller R, Kim JI, Neck V, Fanghänel T (2000) Radiochim Acta 88:625–629

    Article  CAS  Google Scholar 

  48. Schindler PW (1967) Adv Chem Ser 67:196

    Article  Google Scholar 

  49. Ekberg C, Brown P, Comarmond J, Albinsson Y (2001) Mater Res Soc Symp 663:1091–1099

    Google Scholar 

  50. Tulock JJ, Blanchard GJ (2002) J Phys Chem B 106:3568–3575

    Article  CAS  Google Scholar 

  51. Hu MZC, Zielke JT, Lin JS, Byers CH (1999) J Mater Res 14:103–113

    Article  CAS  Google Scholar 

  52. Knopp R, Neck V, Kim JI (1999) Radiochim Acta 86:101–108

    CAS  Google Scholar 

  53. Pouchon MA, Curti E, Degueldre C, Tobler LU (2001) Prog Nucl Energy 38:443–446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the beamtime allotment by ANKA/ISS for measuring the monoclinic ZrO2 reference sample and experimental assistance by S. Mangold. We also acknowledge the analytic group of INE for ICP-MS concentration measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Walther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, HR., Walther, C., Rothe, J. et al. Combined LIBD and XAFS investigation of the formation and structure of Zr(IV) colloids. Anal Bioanal Chem 383, 28–40 (2005). https://doi.org/10.1007/s00216-005-3354-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3354-6

Keywords

Navigation