Skip to main content
Log in

Use of the diffusive gradients in thin films technique to evaluate (bio)available trace metal concentrations in river water

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Concentrations of Cd, Cu, Cr, Pb, Ni and Zn were monitored in the Svitava River (the Czech Republic) during April and September 2005. Total concentrations and total dissolved concentrations were obtained through regular water sampling, and the diffusive gradients in thin films technique (DGT) were used to gain information on the kinetically labile metal concentrations. Each measured concentration was compared with the corresponding average (bio)available concentration calculated from the mass of metal accumulated by the moss species Fontinalis antipyretica. The concentrations of Cd, Pb, Cr and Zn measured using DGT corresponded well with those obtained after the deployment of Fontinalis antipyretica moss bags in the Svitava River, but the concentrations of Cu and Ni did not. The calculated (bio)available Cu concentration correlated well with the total dissolved concentration of Cu, whereas no correlation was found to exist between the concentrations of Ni.

Scheme of the Svitava River monitoring station, including the DGT sampling units and Fontinalis antipyretica moss bags

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ndungu K, Hurst, MP, Bruland KW (2005) Environ Sci Technol 39:3166–3175

    Article  CAS  Google Scholar 

  2. Slaveykova VI, Parthasarathy N, Buffle J, Wilkinson KJ (2004) Sci Total Environ 328:55–68

    Article  CAS  Google Scholar 

  3. Parthasarathy N, Buffle J, Gassama N, Cuenod F (1999) Chem Anal 44:455–470

    CAS  Google Scholar 

  4. Ammann AA (2002) Anal Bioanal Chem 372:448–452

    Article  CAS  Google Scholar 

  5. Sarzanini C, Bruzzoniti MC (2001) Trends Anal Chem 20:304–310

    Article  CAS  Google Scholar 

  6. Downard AJ, Panther J, Kim YC, Powell KJ (2003) Anal Chim Acta 499:17–28

    Article  CAS  Google Scholar 

  7. Apte SC, Batley GE, Bowle KC, Brown PL, Creighton N, Hales LT, Hyne RV, Juli M, Markich SJ, Pablo F, Rogers NJ, Stauber JL, Wilde K (2005) Environ Chem 2:320–330

    Article  CAS  Google Scholar 

  8. Twiss MR, Moffett JW (2002) Environ Sci Technol 36:1061–1068

    Article  CAS  Google Scholar 

  9. Kozelka PB, Bruland KW (1998) Mar Chem 60:267–282

    Article  CAS  Google Scholar 

  10. Davison W, Zhang H (1994) Nature 367:546–548

    Article  CAS  Google Scholar 

  11. Zhang H, Davison W (1995) Anal Chem 67:3391–3400

    Article  CAS  Google Scholar 

  12. Denney S, Sherwood J, Leyden J (1999) Sci Tot Environ 239:71–80

    Article  CAS  Google Scholar 

  13. Alfaro-De la Torre MC, Beaulieu PY, Tessier A (2000) Anal Chim Acta 418:53–68

    Article  Google Scholar 

  14. Li W, Zhao H, Teasdale PR, John R, Zhang S (2002) Anal Chim Acta 464:331–339

    Article  CAS  Google Scholar 

  15. Li W, Teasdale PR, Zhang S, John R, Zhao H (2003) Anal Chem 75:2578–2584

    Article  CAS  Google Scholar 

  16. Dočekalová H, Diviš P (2005) Talanta 65:1174–1178

    Article  CAS  Google Scholar 

  17. Allen HE, Hall RH, Brisbin TD (1980) Environ Sci Technol 35:441–443

    Article  Google Scholar 

  18. Tusseau-Vuillemin MH, Gilbin R, Bakkaus E, Garric J (2004) Environ Toxicol Chem 23:2154–2161

    Article  CAS  Google Scholar 

  19. Zhang H, Zhao FJ, Sun B, Davison W, McGrath SP (2001) Environ Sci Technol 35:2602–2607

    Article  CAS  Google Scholar 

  20. Meyer JS (2002) Mar Environ Res 53:417–423

    Article  CAS  Google Scholar 

  21. Webb JA, Keough MJ (2002) Mar Pollut Bull 44:222–229

    Article  CAS  Google Scholar 

  22. Mouvet C (1984) Environ Technol Lett 5:541–548

    Article  CAS  Google Scholar 

  23. Mersch J, Johansson L (1993) Environ Technol 14:1027–1036

    CAS  Google Scholar 

  24. Mersch J, Reichard M (1998) Arch Environ Contam Toxicol 34:336–342

    Article  CAS  Google Scholar 

  25. Rasmussen G, Andersen S (1999) Water Air Soil Pollut 109:41–52

    Article  CAS  Google Scholar 

  26. Figueira R, Ribeiro T (2005) Environ Pollut 136:293–301

    Article  CAS  Google Scholar 

  27. Goncalves EP, Boaventura RAR (1998) Wat Res 32:1305–1313

    Article  CAS  Google Scholar 

  28. United States Environmental Protection Agency (1998) National recommended water quality criteria. Federal Register 63(234):67548–67558

    Google Scholar 

  29. Hamilton-Taylor J, Smith EJ, Davison W, Zhang H (1999) Limnol Oceanogr 44:172–1780

    Article  Google Scholar 

  30. Eggleton J, Thomas KV (2004) Environ Int 30:973–980

    Article  CAS  Google Scholar 

  31. Borovec Z (2000) Chem Listy 94:939–945

    CAS  Google Scholar 

  32. Bruns I, Friese K, Markert B, Krauss GJ (1997) Sci Tot Environ 204:161–176

    Article  CAS  Google Scholar 

  33. Cenci RM (2000) J Limnol 60(Suppl 1):53–61

    Google Scholar 

  34. Samecka-Cymrman A, Kolon K, Kempers AJ (2005) Sci Tot Environ 341:97–107

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (Projects No. MSM 0021630502 and G4/814/2005 of FRVS). J.P. Matousek is gratefully acknowledged for helpful comments and for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Diviš.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Table 1

Physicochemical conditions of the Svitava River at the monitoring station site during the period of the study (XLS 14kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diviš, P., Dočekalová, H., Brulík, L. et al. Use of the diffusive gradients in thin films technique to evaluate (bio)available trace metal concentrations in river water. Anal Bioanal Chem 387, 2239–2244 (2007). https://doi.org/10.1007/s00216-006-0996-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0996-y

Keywords

Navigation