Skip to main content
Log in

Direct electrochemistry and electrochemical catalysis of immobilized hemoglobin in an ethanol–water mixture

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hemoglobin (Hb) was immobilized on a glassy carbon electrode (GCE) surface by konjac glucomannan (KGM). KGM hydrogel films on GCE have relatively high stabilities in aqueous–ethanol mixtures. The entrapped hemoglobin undergoes fast direct electron transfer reactions in aqueous–organic solvent mixtures. The peak current is bigger, the peak-to-peak separation smaller and the formal potential observed in the cyclic voltammogram is more negative for Hb–KGM/GCE in ethanol–PBS compared to Hb–KGM/GCE in PBS. The electrochemical properties of the Hb in aqueous–organic solution are almost unchanged from with those observed for the purely aqueous solution, suggesting that water pools in the KGM hydrogel play an important role in preventing changes in conformation and making proteins unreactive with polar organic solvents. The immobilized Hb was able to catalyze the reduction of nitric oxide, peroxides (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, 2-butanone peroxide), and the dehalogenation of haloethanes (hexachloroethane, pentachloroethane, tetrachloroethane, etc.). The stability and reproducibility of the modified electrode meant that it could be used to determine these substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–d
Fig. 4a–d
Fig. 5

Similar content being viewed by others

References

  1. Spiro TG, Smulevich G, Su C (1990) Biochemistry 29:4497–4508

    Article  CAS  Google Scholar 

  2. Brunori M (1999) Trends Biochem Sci 24:58–63

    Article  Google Scholar 

  3. Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047–3080

    Article  CAS  Google Scholar 

  4. Blankman JI, Shahzad N, Miller CJ, Guiles RD (2000) Biochemistry 39:14806–14812

    Article  CAS  Google Scholar 

  5. King BC, Hawkridge FM, Hoffman BM (1992) J Am Chem Soc 114:10603–10608

    Article  CAS  Google Scholar 

  6. Nassar AE, Willis WS, Rusling JF (1995) Anal Chem 67:2386–2392

    Article  CAS  Google Scholar 

  7. Armstrong FA, Hill HAO, Walton NJ (1988) Acc Chem Res 21:407–413

    Article  CAS  Google Scholar 

  8. Rusling JF (1998) Acc Chem Res 31:363–369

    Article  CAS  Google Scholar 

  9. Han X, Huang W, Jia J, Dong S, Wang E (2002) Biosens Bioelectron 17:741–746

    Article  CAS  Google Scholar 

  10. Yang J, Hu N (1999) Bioelectrochem Bioenerg 48:117–127

    Article  CAS  Google Scholar 

  11. He P, Hu N, Zhou G (2002) Biomacromolecules 3:139–146

    Article  CAS  Google Scholar 

  12. Zhao L, Liu H, Hu N (2006) Anal Bioanal Chem 384:414–422

    Article  CAS  Google Scholar 

  13. Lei C, Wollenberger U, Bistolas N, Guiseppi-Elie A, Scheller FW (2002) Anal Bioanal Chem 372:235–239

    Article  CAS  Google Scholar 

  14. Fan C, Wang H, Sun S, Zhu D, Wagner G, Li G (2001) Anal Chem 73:2850–2854

    Article  CAS  Google Scholar 

  15. Liu H, Tian Z, Lu Z, Zhang Z, Zhang M, Pang D (2004) Biosens Bioelectron 20:294–304

    Article  CAS  Google Scholar 

  16. Blankman JI, Shahzad N, Miller CJ, Guiles RD (2000) Biochemistry 39:14806–14812

    Article  CAS  Google Scholar 

  17. Xiao C, Lu Y, Zhang L (2001) J Appl Polym Sci 81:882–888

    Article  CAS  Google Scholar 

  18. Zhang H, Yoshimura M, Nishinari K, Williams MA, Foster TJ, Norton IT (2001) Biopolymers 59:38–50

    Article  CAS  Google Scholar 

  19. Antonini E, Brunori M (1971) Haemoglobin and myoglobin in their reactions with ligands. North-Holland, Amsterdam, p 13

  20. Faulkner KM, Bonaventura C, Crumbliss AL (1995) J Biol Chem 270:13604–13612

    Article  CAS  Google Scholar 

  21. Van Dyke BR, Saltman P, Armstrong FA (1996) J Am Chem Soc 118:3490–3492

    Article  Google Scholar 

  22. O’Dea JJ, Osteryoung JG (1993)Anal Chem 65:3090–3097

    Article  CAS  Google Scholar 

  23. Nassar AEF, Zhang Z, Hu N, Rusling JF, Kumosinski TF (1997) J Phys Chem B 101:2224–2231

    Article  CAS  Google Scholar 

  24. Leitch FA, Moore GR, Pettigrew GW (1984) Biochemistry 23:1831–1838

    Article  CAS  Google Scholar 

  25. Yamazaki I, Araiso T, Hayashi Y, Yamada H, Makino R (1978) Adv Biophys 11:249–281

    CAS  Google Scholar 

  26. Alayash AI, Patel RP, Cashon RE (2001) Antioxid Redox Signal 3:313–327

    Article  CAS  Google Scholar 

  27. Schmidt A, Schumacher JT, Reichelt J, Hecht HJ, Bilitewski U (2002) Anal Chem 74:3037–3045

    Article  CAS  Google Scholar 

  28. Logan MSP, Newman LM, Schanke CA, Wackett LP (1993) Biodegradation 4:39–50

    Article  CAS  Google Scholar 

  29. Wirtz M, Klucik J, Rivera M (2000) J Am Chem Soc 122:1047–1056

    Article  CAS  Google Scholar 

  30. Wright M, Honeychurch MJ, Hill HAO (1999) Electrochem Commun 1:609–613

    Article  CAS  Google Scholar 

  31. Rusling JF, Nassar AEF (1993) J Am Chem Soc 115:11891–11897

    Article  CAS  Google Scholar 

  32. Vogel TM, Criddle CS, McCarty PL (1987) Environ Sci Technol 21:722–736

    Article  CAS  Google Scholar 

  33. FA Cotton, G Wilkinson (1998) Advanced inorganic chemistry, 5th edn. Wiley, New York, p 327

  34. Fan C, Chen X, Li G, Zhu J, Zhu D, Scheer H (2000) Phys Chem Chem Phys 2:4409–4413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (20040350605), the Natural Science Foundation of Hubei Province (2005ABA007), and the Fund from the Education Department of Hubei Province, China (T20030718, G200525001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Lin Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, HH., Wan, YQ. & Zou, GL. Direct electrochemistry and electrochemical catalysis of immobilized hemoglobin in an ethanol–water mixture. Anal Bioanal Chem 385, 1470–1476 (2006). https://doi.org/10.1007/s00216-006-0588-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0588-x

Keywords

Navigation