Skip to main content
Log in

Assembly of layer-by-layer films of heme proteins and single-walled carbon nanotubes: electrochemistry and electrocatalysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

After being treated by mixed acids, single-walled carbon nanotubes (SWNTs) were shortened and had negatively charged groups on the surface. Positively charged hemoglobin or myoglobin at pH 5.0 was successfully assembled with SWNTs into layer-by-layer films on solid surfaces, designated as {SWNT/protein} n . While only those proteins in the first few bilayers closest to the electrode surface exhibited electroactivity, the {SWNT/protein} n films demonstrated a much higher fraction of electroactive proteins and better controllability in film construction compared with cast films of the proteins and carbon nanotubes. The proteins in the {SWNT/protein} n films retained their near-native structure at medium pH. The stable protein film electrode showed good electrocatalytic properties toward reduction of oxygen and hydrogen peroxide, demonstrating the potential application of the {SWNT/protein} n films as a new type of biosensor based on the direct electrochemistry of proteins without using mediators.

Cyclic voltammograms at 0.2 V s−1 in pH 7.0 buffers with different number of bilayers (n) for layer-by-layer {single-walled carbon nanotube/hemoglobin} n films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Decher G (1997) Science 277:1232–1237

    Article  CAS  Google Scholar 

  2. Lvov Y (2000) In: Lvov Y, Mohwald H (eds) Protein architecture: interfacing molecular assemblies and immobilization biotechnology. Dekker, New York, p 125

    Google Scholar 

  3. Rusling JF (2000) In: Lvov Y, Mohwald H (eds) Protein architecture: interfacing molecular assemblies and immobilization biotechnology. Dekker, New York, p 337

    Google Scholar 

  4. Gorton L, Lindgren A, Larsson TD, Munteanu F, Ruzgas T, Gazaryan I (1999) Anal Chim Acta 400:91–108

    Article  CAS  Google Scholar 

  5. Chaplin M, Bucke C (1990) (eds) Enzyme technology. Cambridge University Press, Cambridge

    Google Scholar 

  6. Ma H, Hu N, Rusling JF (2000) Langmuir 16:4969–4975

    Article  CAS  Google Scholar 

  7. He P, Hu N, Zhou G (2002) Biomacromolecules 3:139–146

    Article  PubMed  CAS  Google Scholar 

  8. Zhou Y, Li Z, Hu N, Zeng Y, Rusling JF (2002) Langmuir 18:8573–8579

    Article  CAS  Google Scholar 

  9. He P, Hu N, Rusling JF (2004) Langmuir 20:722–729

    Article  PubMed  CAS  Google Scholar 

  10. He P, Hu N (2004) J Phys Chem B 108:13144–13152

    Article  CAS  Google Scholar 

  11. Shen L, Hu N (2005) Biomacromolecules 6:1475–1483

    Article  PubMed  CAS  Google Scholar 

  12. Gadd G, Blackford M, Moricca S, Webb N, Evans, P, Smith A, Jacobsen G, Leung S, Day A, Hua Q (1997) Science 277:933–936

    Article  CAS  Google Scholar 

  13. Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S (1999) Science 285:1719–1722

    Article  PubMed  CAS  Google Scholar 

  14. Balasubramanian K, Burghard M (2005) Small 1:180–192

    CAS  Google Scholar 

  15. Gooding JJ (2005) Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  16. Campbell JK, Sun L, Crooks RM (1999) J Am Chem Soc 121:3779–3780

    Article  CAS  Google Scholar 

  17. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Anal Chem 74:1993–1997

    Article  PubMed  CAS  Google Scholar 

  18. Wang L, Wang J, Zhou F (2004) Electroanalysis 16:627–632

    Article  CAS  Google Scholar 

  19. Cai C, Chen J (2004) Anal Biochem 325:285–292

    Article  PubMed  CAS  Google Scholar 

  20. Zhao G, Zhang L, Wei X, Yang Z (2003) Electrochem Commun 5:825–829

    Article  CAS  Google Scholar 

  21. Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Electrochem Commun 5:408–411

    Article  CAS  Google Scholar 

  22. Gooding JJ, Wibowo R, Liu JQ, Yang WR, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) J Am Chem Soc 125:9006–9007

    Article  PubMed  CAS  Google Scholar 

  23. Zhao L, Liu H, Hu N (2005) J Colloid Interface Sci (in press)

  24. Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Nature Mater 1:190–194

    Article  CAS  Google Scholar 

  25. Olek M, Ostrander J, Jurga S, Mohwald H, Kotov N, Kempa K, Giersig M (2004) Nano Lett 4:1889–1895

    Article  CAS  Google Scholar 

  26. Zhang M, Yan Y, Gong K, Mao L, Guo Z, Chen Y (2004) Langmuir 20:8781–8785

    Article  PubMed  CAS  Google Scholar 

  27. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Science 282:95–98

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  28. Kuznetsova A, Popova I, Yates JT, Bronikowski MJ, Huffman CB, Liu J, Smalley RE, Hwu HH, Chen JG (2001) J Am Chem Soc 123:10699–10704

    Article  PubMed  CAS  Google Scholar 

  29. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez F, Shon Y-S, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253–1256

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  30. Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2001) J Am Chem Soc 123:9451–9452

    Article  PubMed  CAS  Google Scholar 

  31. Sauerbrey G (1959) Z Phys 155:206–214

    Article  CAS  Google Scholar 

  32. Creighton TE (1990) Protein structure, a practical approach. IRL, New York

    Google Scholar 

  33. Ajayan PM (1999) Chem Rev 99:1787–1800

    Article  PubMed  CAS  Google Scholar 

  34. Lvov Y, Ariga K, Ichinose I, Kunitake T (1995) J Am Chem Soc 117:6117–6123

    Article  CAS  Google Scholar 

  35. Serizawa T. Kamimura S, Kawanishi N, Akashi M (2002) Langmuir 18:8381–8385

    Article  CAS  Google Scholar 

  36. Kim B, Sigmund WM (2004) Langmuir 20:8239–8242

    Article  PubMed  CAS  Google Scholar 

  37. Chou A, Bocking T, Singh NK, Gooding JJ (2005) Chem Commun 842–844

  38. Matthew JB, Hanania GIH, Gurd FRN (1979) Biochemistry 18:1919–1928

    Article  PubMed  CAS  Google Scholar 

  39. Bellelli A, Antonini G, Brunori M, Springer BA, Sligar SG (1990) J Biol Chem 265:18898–18901

    PubMed  CAS  Google Scholar 

  40. Weissbluth M (1974) Molecular biology: biochemistry and biophysics. Springer Berlin Heidelberg New York

    Google Scholar 

  41. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies, DR, Phillips DC, Shore VC (1960) Nature 185:422–427

    Article  CAS  Google Scholar 

  42. Theorell H, Ehrenberg A (1951) Acta Chem Scand 5:823–848

    Article  CAS  Google Scholar 

  43. George P, Hanania GIH (1953) Biochem J 55:236–243

    PubMed  CAS  Google Scholar 

  44. Rusling JF, Nassar A-EF (1993) J Am Chem Soc 115:11891–11897

    Article  CAS  Google Scholar 

  45. Huang Q, Lu Z, Rusling JF (1996) Langmuir 12:5472–5480

    Article  CAS  Google Scholar 

  46. Murray RW (1984) In: Bard AJ (ed) Electroanalytical chemistry, vol 13 Dekker, New York, p 191

    Google Scholar 

  47. Banks CE, Davies, TJ, Wildgoose GG, Compton RG (2005) Chem Commun 829–841

  48. Azamian BR, Davis JJ, Coleman KS, Bagshaw CB, Green MLH (2002) J Am Chem Soc 124:12664–12665

    Article  PubMed  CAS  Google Scholar 

  49. Osteryoung JG, O’Dea JJ (1986) In: Bard AJ (ed) Electroanalytical chemistry, vol 14. Dekker, New York, p 209

    Google Scholar 

  50. Zhang Z, Rusling JF (1997) Biophys Chem 63:133–146

    Article  PubMed  CAS  Google Scholar 

  51. Nassar A-EF, Zhang Z, Hu N, Rusling JF, Kumosinski TF (1997) J Phys Chem 101:2224–2231

    CAS  Google Scholar 

  52. O’Dea JJ, Osteryoung JG (1993) Anal Chem 65:3090–3097

    Article  CAS  Google Scholar 

  53. Meites L (1965) Polarographic techniques, 2nd edn. Wiley, New York

    Google Scholar 

  54. Bond AM (1980) Modern polarographic methods in analytical chemistry. Dekker, New York

    Google Scholar 

  55. Huang H, Hu N, Zeng Y, Zhou G (2002) Anal Biochem 308:141–151

    Article  PubMed  CAS  Google Scholar 

  56. He P, Hu N (2004) Electroanlysis 16:1122–1131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (NSFC, 20275006, 20475008) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naifei Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Liu, H. & Hu, N. Assembly of layer-by-layer films of heme proteins and single-walled carbon nanotubes: electrochemistry and electrocatalysis. Anal Bioanal Chem 384, 414–422 (2006). https://doi.org/10.1007/s00216-005-0204-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0204-5

Keywords

Navigation