Skip to main content
Log in

Voltammetric study on ion transport across a bilayer lipid membrane in the presence of a hydrophobic ion or an ionophore

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review describes voltammetric studies on ion transport from one aqueous phase (W1) to another (W2) across a bilayer lipid membrane (BLM) containing a hydrophobic ion, valinomycin (Val) or gramicidin A (GA). In particular, the ion transport mechanisms are discussed in terms of the distribution of a pair of ions between aqueous and BLM phases. By addition of a small amount of hydrophobic ion into W1 and/or W2 containing a hydrophilic salt as a supporting electrolyte, the hydrophobic ion was distributed into the BLM with the counter ion to maintain electroneutrality within the BLM phase. It was found that the counter ion was transferred between W1 and W2 across the BLM by applying a membrane potential. Facilitated transport of alkali ions across a BLM containing Val as an ion carrier compound, could be interpreted by considering not only the formation of the alkali metal ion–Val complex but also the distribution of both the objective cation and the counter ion. In the case of addition of GA as a channel-forming compound into the BLM, the facilitated transport of alkali ions across the BLM depended on the ionic species of the counter ions. It was discovered that the influence of the counter ion on the facilitated transport of alkali ions across the BLM could be explained in terms of the hydrophobicity and the ionic radius of the counter ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Tien HT (1974) Bilayer lipid membranes. Marcel Dekker, New York

    Google Scholar 

  2. Gennis RB (1989) Biomembranes. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Koryta J (1991) Ions, electrodes and membranes, 2nd edn. Wiley, Chichester

    Google Scholar 

  4. Aidley DJ, Stanfield PR (1996) Ion channels. Cambridge University Press, Cambridge

    Google Scholar 

  5. Woolley GA, Wallace BA (1992) J Membr Biol 129:109–136

    CAS  Google Scholar 

  6. Hamilton RT, Kaler EW (1990) J Membr Sci 54:259–269

    Article  CAS  Google Scholar 

  7. Liberman EA, Topaly VP (1968) Biochim Biophys Acta 163:125–136

    Article  CAS  Google Scholar 

  8. Liberman YA, Topaly VP (1969) Biofizika 14:452–461

    CAS  Google Scholar 

  9. LeBlanc OH Jr(1969) Biochim Biophys Acta 193:350–360

    Article  CAS  Google Scholar 

  10. DeLevie R, Seidah NG (1974) J Membr Biol 16:1–16

    Article  CAS  Google Scholar 

  11. Bender CJ (1988) Chem Soc Rev 17:317–346

    Article  CAS  Google Scholar 

  12. DeLevie R (1976) J Electroanal Chem 69:265–297

    Article  CAS  Google Scholar 

  13. Kutnik J, Tien HT (1986) Bioelectrochem Bioenerg 16:435–447

    Article  CAS  Google Scholar 

  14. Bender CJ, Tien HT (1987) Anal Chim Acta 201:51–58

    Article  CAS  Google Scholar 

  15. Bender CJ, Tien HT (1987) Anal Chim Acta 198:259–269

    Article  CAS  Google Scholar 

  16. Tien HT (1985) Prog Surf Sci 19:169–274

    Article  CAS  Google Scholar 

  17. Miyamoto VK, Thompson TE (1967) J Colloid Interf Sci 25:16–25

    Article  CAS  Google Scholar 

  18. Bruner LJ (1970) Biophysik 6:241–256

    Article  CAS  Google Scholar 

  19. Ketterer B, Neumcke B, Läuger P (1971) 5:225–245

  20. Parsegian A (1969) 221:844–846

  21. Szabo G (1974) 252:47–49

  22. Flewelling RF, Hubbell WL (1986) Biophys J 49:541–552

    CAS  Google Scholar 

  23. Shirai O, Kihara S, Suzuki M, Ogura K, Matsui M (1991) Anal Sci 7th suppl:607–610

    Google Scholar 

  24. Shirai O, Kihara S, Yoshida Y, Matsui M (1995) J Electroanal Chem 389:61–70

    Article  Google Scholar 

  25. Sato H, Hakamada H, Yamazaki Y, Uto M, Sugawara M, Umezawa Y (1998) Biosens Bioelectron 13:1035–1046

    Article  CAS  Google Scholar 

  26. Wittenkeller L, de Freitas DM, Ramasamy R (1992) Biochem Biophys Res Commun 184:915–921

    Article  CAS  Google Scholar 

  27. Wittenkeller L, Lin W, Diven C, Ciaccia A, Wang F, de Freitas DM (2001) Inorg Chem 40:1654–1662

    Article  CAS  Google Scholar 

  28. Shirai O, Yamana H, Ohnuki T, Yoshida Y, Kihara S (2004) J Electroanal Chem 570:219–226

    Article  CAS  Google Scholar 

  29. Honig BH, Hubbell WL, Flewelling RF (1986) Ann Rev Biophys Biophys Chem 15:163–193

    Article  CAS  Google Scholar 

  30. Chadwick DJ, Cardew G (eds) (1999) Gramicidin and related ion channel-forming peptides. Wiley, Chichester

    Google Scholar 

  31. Andersen OS (1984) Ann Rev Physiol 46:531–548

    Article  CAS  Google Scholar 

  32. Läuger P (1985) Angew Chem Int Ed Engl 24:905–923

    Article  Google Scholar 

  33. Sung SS, Jordan PC (1989) J Theor Biol 140:369–380

    CAS  Google Scholar 

  34. Myers VB, Haydon DA (1972) Biochim Biophys Acta 274:313–322

    Article  CAS  Google Scholar 

  35. Eisenman G, Sandblom J, Neher E (1978) Biophys J 22:307–339

    CAS  Google Scholar 

  36. Watanabe S, Watanabe S, Seno M (1989) J Membr Sci 44:253–263

    Article  CAS  Google Scholar 

  37. Cohen BE (1982) J Membr Biol 68:79–88

    Article  CAS  Google Scholar 

  38. Tien HT (1985) Prog Surf Sci 19:169–274

    Article  CAS  Google Scholar 

  39. Hanai T, Haydon DA, Taylor J (1965) J Theor Biol 9:422–432

    Article  CAS  Google Scholar 

  40. Shirai O, Yoshida Y, Matsui M, Maeda K, Kihara S (1996) Bull Chem Soc Jpn 69:3151–3162

    Article  CAS  Google Scholar 

  41. Girault HH, Schiffrin D (1989) In: Bard AJ (ed) Electrochemistry of liquid-liquid interface. In: Electroanalytical chemistry, vol 15. Marcel Dekker, New York

    Google Scholar 

  42. Vanysek P (1985) In: Berthier G, Dewar MJS, Fischer H, Fukui K, Hall GG, Hinze J, Jaffe HH, Jortner J, Kutzelnigg W, Ruedenberg K, Tomasi J (eds) Electrochemistry of liquid-liquid interfaces. In: Lecture notes in chemistry, vol 39. Springer, Berlin Heidelberg New York

    Google Scholar 

  43. Marcus Y (1983) Pure Appl Chem 55:977–1021

    CAS  Google Scholar 

  44. Marcus Y (1991) J Chem Soc Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

  45. Yoshida Y, Matsui M, Shirai O, Maeda K, Kihara S (1998) Anal Chim Acta 373:213–225

    Article  CAS  Google Scholar 

  46. Homolka D, Hung LQ, Hafmanová A, Khalil MW, Koryta J, Mareèek V, Samec Z, Sen SK, Vanýsek P, Weber J, Bøezina M, Janda M, Stibor I (1980) Anal Chem 52:1606–1610

    Article  CAS  Google Scholar 

  47. Koryta J, Bøezina M, Hafmanová A, Homolka D, Hung LQ, Khalil W, Mareèek V, Samec Z, Sen SK, Vanýsek P, Weber J (1980) Bioelectrochem Bioenerg 7:61–68

    Article  CAS  Google Scholar 

  48. Favero G, Campanella L, D’Annibale A, Santucci R, Ferri T (2003) Microchem J 74:141–148

    Article  CAS  Google Scholar 

  49. Läuger P (1972) Science 178:24–30

    Article  Google Scholar 

  50. Hafmanová A, Koryta J, Bøezina M, Ryan TH, Angelis K (1979) Inorg Chim Acta 37:135–140

    Article  Google Scholar 

  51. Shirai O, Yamana H, Ohnuki T, Yoshida Y, Kihara S (2006) J Electroanal Chem (submitted)

  52. Nelson A (2001) Biophys J 80:2694–2703

    CAS  Google Scholar 

  53. Becucci L, Guidelli R, Peggion C, Toniolo C, Moncelli MR (2005) J Electroanal Chem 576:121–128

    Article  CAS  Google Scholar 

  54. Hladky SB, Haydon DA (1972) Biochim Biophys Acta 274:294–312

    Article  CAS  Google Scholar 

  55. Bender CJ, Tien HT (1987) Anal Chim Acta 201:51–58

    Article  CAS  Google Scholar 

  56. Bokvist K, Sandblom J (1992) J Membr Sci 66:157–168

    Article  CAS  Google Scholar 

  57. Koeppe RE II, Hodgson KO, Stryer L (1978) J Mol Biol 121:41–54

    Article  CAS  Google Scholar 

  58. Sung SS, Jordan PC (1987) Biophys J 51:661–672

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. K. Maeda (Kyoto Institute of Technology), Prof. H. Yamana (Kyoto University), and Dr. A. Uehara (Kyoto University) for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Shirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirai, O., Yoshida, Y. & Kihara, S. Voltammetric study on ion transport across a bilayer lipid membrane in the presence of a hydrophobic ion or an ionophore. Anal Bioanal Chem 386, 494–505 (2006). https://doi.org/10.1007/s00216-006-0435-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0435-0

Keywords

Navigation