Skip to main content
Log in

Ion transport across bilayer lipid membranes in the presence of tetraphenylborate

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A pair of symmetrical cathodic and anodic peaks is observed in cyclic voltammograms for the ion transport across a bilayer lipid membrane (BLM) between two aqueous phases in the presence of tetraphenylborate (TPhB). Although TPhB serves as a carrier of a hydrophilic counter ion (Na+) under the steady-state condition, the reason for the appearance of symmetrical peaks has not been clearly explained until now. From the chronoamperometric analysis, it is turned out that the symmetrical peaks are attributed to the translocation of TPhB between two adsorbed layers on the surface of the BLM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.T. Tien, Bilayer Lipid Membranes: Theory and Practice (Marcel Dekker Inc, New York, 1974)

    Google Scholar 

  2. H.T. Tien, Prog. Surf. Sci. 19, 169 (1985)

    Article  CAS  Google Scholar 

  3. R.B. Gennis, Biomembranes: Molecular Structure and Function (Springer-Verlag, Berlin, 1989)

    Book  Google Scholar 

  4. P. Läuger, Science 178, 24 (1972)

    Article  Google Scholar 

  5. D.A. Haydon, S.B. Hladky, Q. Rev, Biophys. 5, 187 (1972)

    CAS  Google Scholar 

  6. P. Läuger, Angew. Chem. Int. Ed. Engl. 24, 905 (1985)

    Article  Google Scholar 

  7. W.D. Stein, Channels, Carriers, and Pumps-An Introduction to Membrane Transport- (Academic Press Inc, San Diego, 1990)

    Google Scholar 

  8. J. Rettinger, S. Schwarz, W. Schwarz, Electrophysiology: Basics, Modern Approaches and Applications (Springer, Heidelberg, 2016)

    Book  Google Scholar 

  9. M. Winterhalter, Curr. Opin. Colloid Interface Sci. 5, 250 (2000)

    Article  CAS  Google Scholar 

  10. H.T. Tien, A. Ottova, IEEE Trans. Dielectr. Electr. Insul. 10, 717 (2003)

    Article  CAS  Google Scholar 

  11. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  12. E.A. Liberman, V.P. Topaly, Biochim. Biophys. Acta 163, 125 (1968)

    Article  CAS  Google Scholar 

  13. O.H. Le Blanc, Jr., Biochim. Biophys. Acta 193, 350 (1969)

    Article  Google Scholar 

  14. B. Ketterer, B. Neumcke, P. Läuger, J. Membr. Biol. 5, 225 (1971)

    Article  CAS  Google Scholar 

  15. R. Benz, P. Läuger, K. Janko, Biochim. Biophys. Acta 455, 701 (1976)

    Article  CAS  Google Scholar 

  16. R. De Levie, N.G. Seidah, D. Larkin, Electroanal. Chem. Interference Electrochem. 49, 153 (1974)

    Article  Google Scholar 

  17. J. Kutnik, H.T. Tien, J. Biochem. Biophys. Methods 11, 317 (1985)

    Article  CAS  Google Scholar 

  18. J. Kutnik, H.T. Tien, Bioelectrochem. Bioenerg. 16, 435 (1986)

    Article  CAS  Google Scholar 

  19. C.J. Bender, H.T. Tien, Anal. Chim. Acta 198, 259 (1987)

    Article  CAS  Google Scholar 

  20. A. Parsegian, Nature 221, 844 (1969)

    Article  CAS  Google Scholar 

  21. B.H. Honig, W.L. Hubbell, R.F. Flewelling, Ann. Rev. Biophys. Biophys. Chem. 15, 163 (1986)

    Article  CAS  Google Scholar 

  22. A. Ebert, C. Hannesschlaeger, K.-U. Goss, P. Pohl, Biophys. J. 2018, 115 (1931)

    Google Scholar 

  23. S. Ozaki, K. Kano, O. Shirai, Phys. Chem. Chem. Phys. 10, 4449 (2008)

    Article  CAS  Google Scholar 

  24. D. Sezer, T. Oruç, Phys. Chem. B 121, 5218 (2017)

    Article  CAS  Google Scholar 

  25. C. Hannesschlaeger, A. Horner, P. Pohl, Chem. Rev. 119, 5922 (2019)

    Article  CAS  Google Scholar 

  26. O. Shirai, S. Ozaki, J. Onishi, N. Kozai, T. Ohnuki, K. Kano, Chem. Lett. 38, 1038 (2009)

    Article  CAS  Google Scholar 

  27. O. Shirai, S. Kihara, Y. Yoshida, M. Matsui, J. Electroanal. Chem. 389, 61 (1995)

    Article  Google Scholar 

  28. O. Shirai, Y. Yoshida, M. Matsui, K. Maeda, S. Kihara, Bull. Chem. Soc. Jpn. 69, 3151 (1996)

    Article  CAS  Google Scholar 

  29. O. Shirai, Y. Yoshida, S. Kihara, Anal. Bioanal. Chem. 386, 494 (2006)

    Article  CAS  Google Scholar 

  30. J. Onishi, O. Shirai, K. Kano, Electroanalysis 22, 1229 (2010)

    Article  CAS  Google Scholar 

  31. K. Kimura, O. Shirai, Y. Kitazumi, K. Kano, J. Electroanal. Chem. 779, 131 (2016)

    Article  CAS  Google Scholar 

  32. K. Murakami, K. Hori, K. Maeda, M. Fukuyama, Y. Yoshida, Langmuir 32, 10678 (2016)

    Article  CAS  Google Scholar 

  33. T. Omatsu, K. Hori, Y. Naka, M. Shimazaki, K. Sakai, K. Murakami, K. Maeda, M. Fukuyama, Y. Yoshida, Analyst (2020). https://doi.org/10.1039/d0an00222d

    Article  PubMed  Google Scholar 

  34. T. Omatsu, K. Hori, N. Ishida, K. Maeda, Y. Yoshida, Biophys. Biochim. Acta-Biomembr. 1863, 183724 (2021)

    Article  CAS  Google Scholar 

  35. T. Hanai, S. Morita, N. Koizumi, M. Kajiyama, Bull. Inst. Chem. Res. Kyoto Univ. 48, 147 (1970)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Kenji Kano for his encouragement and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Shirai.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naruse, T., Yamada, Y., Sowa, K. et al. Ion transport across bilayer lipid membranes in the presence of tetraphenylborate. ANAL. SCI. 38, 683–688 (2022). https://doi.org/10.1007/s44211-022-00086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00086-7

Keywords

Navigation