Skip to main content
Log in

Dilatometric and mass spectrometric investigations on lithium ion battery anode materials

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lithium ion batteries operate beyond the thermodynamic stability of the aprotic organic electrolyte used. In 1 M LiClO4 propylene carbonate electrolyte, with and without the addition of ethylene sulfite as a film forming electrolyte additive, we have used in situ electrochemical dilatometry and on-line electrochemical mass spectrometry to study the volume expansion/contraction of graphitic anodes and the formation of propylene gas, which both can occur during the graphite anode reduction (charge) process. The combination of both methods allows us to get insights into the respective electrolyte reduction mechanisms. The results indicate that the major failure mechanisms of graphitic anodes in pure PC electrolyte can be attributed to the intercalation of solvated lithium ions and the formation of propylene gas, which causes the graphite particles to exfoliate and crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Mechanical stress associated with solvent co-intercalation and gas formation may be able to create crevices, fissures or pores, since graphite is a polycrystalline material.

References

  1. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Adv Mater 10:725

    Article  CAS  Google Scholar 

  2. Peled E (1983) In: Gabano J-P (ed) Lithium batteries. Academic, London

  3. Winter M, Moeller K-C, Besenhard JO (2003) In: Nazri GA, Pistioa G (eds) Lithium batteries: science and technology. Kluwer, Dortrecht

  4. Dey AN (1970) 138th Electrochem Soc Fall Meeting, Atlantic City, NJ, Abstr 62

  5. Fong R, Von Sacken U, Dahn JR (1990) J Electrochem Soc 137:2009

    CAS  Google Scholar 

  6. Métrot A, Willmann P, Hérold A (1977) Mater Sci Eng 31:81

    Google Scholar 

  7. Métrot A, Willmann P, McRae E, Hérold A (1979) Carbon 17:183

    Article  Google Scholar 

  8. Francois B, Mermilliod N, Zuppirolly L (1981) Synthetic Met 4:131

    Article  CAS  Google Scholar 

  9. Biberacher W, Lerf A, Besenhard JO, Möhwald H, Butz T (1982) Mater Res Bull 17:1385

    Article  CAS  Google Scholar 

  10. Winter M, Wrodnigg GH, Besenhard JO, Biberacher W, Novák P (2000) J Electrochem Soc 147:2427–2431

    Article  CAS  Google Scholar 

  11. Wolter O, Heitbaum J (1984) Ber Bunsen Phys Chem 88:2–6

    CAS  Google Scholar 

  12. Lanz M, Novák P (2001) J Power Sources 102:277–282

    Article  CAS  Google Scholar 

  13. Imhof R, Novák P (1998) J Electrochem Soc 145:1081

    CAS  Google Scholar 

  14. Imhof R, Novák P (1999) J Electrochem Soc 146:1702

    Article  CAS  Google Scholar 

  15. Billaud D, McRae E, Hérold A (1979) Mater Res Bull 14:857

    Article  CAS  Google Scholar 

  16. Besenhard JO, Winter M, Yang J, Biberacher J (1995) J Power Sources 54:228

    Article  CAS  Google Scholar 

  17. Wrodnigg GH, Besenhard JO, Winter M (1999) J Electrochem Soc 146:470

    Article  CAS  Google Scholar 

  18. Wagner MR, Raimann PR, Trifonova A, Moeller K-C, Besenhard JO, Winter M (2003) Electrochem Solid St (in press)

Download references

Acknowledgements

Support from the Austrian Science Funds (FWF) via the special research program “Electroactive Materials” is gratefully acknowledged. The authors thank Mitsubishi Chemical Corp. (Japan), Honeywell (Germany) and TIMCAL (Switzerland) for the donation of samples used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, M.R., Raimann, P.R., Trifonova, A. et al. Dilatometric and mass spectrometric investigations on lithium ion battery anode materials. Anal Bioanal Chem 379, 272–276 (2004). https://doi.org/10.1007/s00216-004-2570-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2570-9

Keywords

Navigation