Skip to main content

Advertisement

Log in

DFT rationalization of the room-temperature luminescence properties of Ru(bpy) 2+3 and Ru(tpy) 2+2 : 3MLCT–3MC minimum energy path from NEB calculations and emission spectra from VRES calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Extensive experimental data covering 40 years of research are available on Ru(bpy) 2+3 and Ru(tpy) 2+2 , which are the archetypes of inorganic photochemistry. The last decade has enabled computational chemists to tackle this topic through density functional theory and to shed some new light on our old friends. For the first time, this theoretical study maps the minimum energy path linking the 3MLCT (metal-to-ligand charge transfer) and the 3MC (metal-centred) states with the nudged elastic band method, also providing the calculation of the corresponding energy barrier. Remarkably, the obtained data are in very good agreement with the experimental activation energies reported from variable-temperature luminescence measurements. Calculation of vibrationally resolved electronic spectra is also in excellent agreement with the experimental emission maximum and bandshape of Ru(bpy) 2+3 . Additionally, the 3MC–GS minimum energy crossing point was optimized for each complex. The combination of these data rationalizes the room-temperature luminescence of the bpy complex and non-luminescence of the tpy complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244

    Article  CAS  Google Scholar 

  2. Meyer TJ (1986) Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states. Pure Appl Chem 58:1193–1206

    Article  CAS  Google Scholar 

  3. Juris A, Balzani V, Barigelletti F et al (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277

    Article  CAS  Google Scholar 

  4. Campagna S, Puntoriero F, Nastasi F et al (2007) Photochemistry and photophysics of coordination compounds: ruthenium. In: Balzani V, Campagna S (eds) Photochemistry and photophysics of coordination compounds I. Springer, Berlin

    Google Scholar 

  5. Thompson DW, Ito A, Meyer TJ (2013) [Ru(bpy)3]2+* and other remarkable metal-to-ligand charge transfer (MLCT) excited states. Pure Appl Chem 85:1257–1305. https://doi.org/10.1351/PAC-CON-13-03-04

    Article  CAS  Google Scholar 

  6. Daul C, Baerends EJ, Vernooijs P (1994) A density functional study of the MLCT states of [Ru(bpy)3]2+ in D3 symmetry. Inorg Chem 33:3538–3543

    Article  CAS  Google Scholar 

  7. Buchs M, Daul C (1998) Geometry optimization and excited states of Tris(2,2′-bipyridine)ruthenium(II) using density functional theory. Chimia 52:163–166

    CAS  Google Scholar 

  8. Zheng K, Wang J, Shen Y et al (2001) Electronic structures and related properties of complexes M(bpy) n+3 (M = Re, Os, and Ir; n = 1, 2, and 3, respectively). J Phys Chem A 105:7248–7253

    Article  CAS  Google Scholar 

  9. Zheng KC, Wang JP, Peng WL et al (2002) Theoretical studies on the electronic structures and related properties of [Ru(L)3]2+ (L = bpy, bpm, pbz) with DFT method. J Mol Struct THEOCHEM 582:1–9

    Article  CAS  Google Scholar 

  10. Stoyanov SR, Villegas JM, Rillema DP (2002) Density functional theory calculations of selected Ru(II) two ring diimine complex dications. Inorg Chem 41:2941–2945. https://doi.org/10.1021/ic0110629

    Article  CAS  Google Scholar 

  11. Muhavini Wawire C, Jouvenot D, Loiseau F et al (2014) Density-functional study of luminescence in polypyridine ruthenium complexes. J Photochem Photobiol Chem 276:8–15. https://doi.org/10.1016/j.jphotochem.2013.10.018

    Article  Google Scholar 

  12. Xie Z-Z, Fang W-H (2005) Electrophosphorescent divalent osmium and ruthenium complexes: a density functional theory investigation of their electronic and spectroscopic properties. J Mol Struct THEOCHEM 717:179–187. https://doi.org/10.1016/j.theochem.2004.11.030

    Article  CAS  Google Scholar 

  13. Moret M-E, Tavernelli I, Rothlisberger U (2009) Combined QM/MM and classical molecular dynamics study of [Ru(bpy)3]2+ in water. J Phys Chem B 113:7737–7744. https://doi.org/10.1021/jp900147r

    Article  CAS  Google Scholar 

  14. Moret M-E, Tavernelli I, Chergui M, Rothlisberger U (2010) Electron localization dynamics in the triplet excited state of [Ru(bpy)3]2+ in aqueous solution. Chem Eur J 16:5889–5894. https://doi.org/10.1002/chem.201000184

    Article  CAS  Google Scholar 

  15. Tavernelli I, Curchod BFE, Rothlisberger U (2011) Nonadiabatic molecular dynamics with solvent effects: a LR-TDDFT QM/MM study of ruthenium(II) tris(bipyridine) in water. Chem Phys 391:101–109. https://doi.org/10.1016/j.chemphys.2011.03.021

    Article  CAS  Google Scholar 

  16. Nozaki K, Takamori K, Nakatsugawa Y, Ohno T (2006) Theoretical studies of phosphorescence spectra of tris(2,2′-bipyridine) transition metal compounds. Inorg Chem 45:6161–6178. https://doi.org/10.1021/ic052068r

    Article  CAS  Google Scholar 

  17. Alary F, Heully J-L, Bijeire L, Vicendo P (2007) Is the 3MLCT the only photoreactive state of polypyridyl complexes? Inorg Chem 46:3154–3165. https://doi.org/10.1021/ic062193i

    Article  CAS  Google Scholar 

  18. Borg OA, Godinho SSMC, Lundqvist MJ et al (2008) Computational study of the lowest triplet state of ruthenium polypyridyl complexes used in artificial photosynthesis. J Phys Chem A 112:4470–4476. https://doi.org/10.1021/jp8000702

    Article  CAS  Google Scholar 

  19. Jakubikova E, Chen W, Dattelbaum DM et al (2009) Electronic structure and spectroscopy of [Ru(tpy)2]2+, [Ru(tpy)(bpy)(H2O)]2+, and [Ru(tpy)(bpy)(Cl)]+. Inorg Chem 48:10720–10725. https://doi.org/10.1021/ic901477m

    Article  CAS  Google Scholar 

  20. Österman T, Abrahamsson M, Becker H-C et al (2012) Influence of triplet state multidimensionality on excited state lifetimes of bis-tridentate RuII complexes: a computational study. J Phys Chem A 116:1041–1050. https://doi.org/10.1021/jp207044a

    Article  Google Scholar 

  21. Österman T, Persson P (2012) Excited state potential energy surfaces of bistridentate RuII complexes—a TD-DFT study. Chem Phys 407:76–82. https://doi.org/10.1016/j.chemphys.2012.09.001

    Article  Google Scholar 

  22. Breivogel A, Meister M, Förster C et al (2013) Excited state tuning of bis(tridentate) ruthenium(II) polypyridine chromophores by push-pull effects and bite angle optimization: a comprehensive experimental and theoretical study. Chem Eur J 19:13745–13760. https://doi.org/10.1002/chem.201302231

    Article  CAS  Google Scholar 

  23. Charlot M-F, Pellegrin Y, Quaranta A et al (2006) A theoretical investigation into the photophysical properties of ruthenium polypyridine-type complexes. Chem Eur J 12:796–812. https://doi.org/10.1002/chem.200500482

    Article  CAS  Google Scholar 

  24. Guillemoles J-F, Barone V, Joubert L, Adamo C (2002) A theoretical investigation of the ground and excited states of selected Ru and Os polypyridyl molecular dyes. J Phys Chem A 106:11354–11360. https://doi.org/10.1021/jp021517v

    Article  CAS  Google Scholar 

  25. Heully J-L, Alary F, Boggio-Pasqua M (2009) Spin-orbit effects on the photophysical properties of Ru(bpy) 2+3 . J Chem Phys 131:184308. https://doi.org/10.1063/1.3254196

    Article  Google Scholar 

  26. Nozaki K (2006) Theoretical studies on photophysical properties and mechanism of phosphorescence in [fac-Ir (2-phenylpyridine)3]. J Chin Chem Soc 53:101–112

    Article  CAS  Google Scholar 

  27. Garino C, Terenzi A, Barone G, Salassa L (2016) Teaching inorganic photophysics and photochemistry with three ruthenium(II) polypyridyl complexes: a computer-based exercise. J Chem Educ 93:292–298. https://doi.org/10.1021/acs.jchemed.5b00801

    Article  CAS  Google Scholar 

  28. Arias-Rotondo DM, McCusker JK (2016) The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem Soc Rev 45:5803–5820. https://doi.org/10.1039/C6CS00526H

    Article  CAS  Google Scholar 

  29. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  30. Sun Q, Dereka B, Vauthey E et al (2017) Ultrafast transient IR spectroscopy and DFT calculations of ruthenium(II) polypyridyl complexes. Chem Sci 8:223–230. https://doi.org/10.1039/C6SC01220E

    Article  CAS  Google Scholar 

  31. Jonsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Cicotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, pp 385–404

  32. Henkelman G, Jóhannesson G, Jónsson H (2000) Methods for finding saddle points and minimum energy paths. In: Schwartz SD (ed) Theoretical methods in condensed phase chemistry. Kluwer Academic, Dordrecht, pp 269–300

    Google Scholar 

  33. Göttle AJ, Alary F, Boggio-Pasqua M et al (2016) Pivotal role of a pentacoordinate 3MC state on the photocleavage efficiency of a thioether ligand in ruthenium(II) complexes: a theoretical mechanistic study. Inorg Chem 55:4448–4456. https://doi.org/10.1021/acs.inorgchem.6b00268

    Article  Google Scholar 

  34. Sanz García J, Alary F, Boggio-Pasqua M et al (2016) Is photoisomerization required for NO photorelease in ruthenium nitrosyl complexes? J Mol Model 22:284. https://doi.org/10.1007/s00894-016-3138-2

    Article  Google Scholar 

  35. Dixon IM, Heully J-L, Alary F, Elliott PIP (2017) Theoretical illumination of highly original photoreactive 3MC states and the mechanism of the photochemistry of Ru(II) tris(bidentate) complexes. Phys Chem Chem Phys 19:27765–27778. https://doi.org/10.1039/C7CP05532C

    Article  CAS  Google Scholar 

  36. Harrigan RW, Hager GD, Crosby GA (1973) Evidence for multiple-state emission from ruthenium(II) complexes. Chem Phys Lett 21:487–490

    Article  CAS  Google Scholar 

  37. Fleischhauer PD, Adamson AW, Sartori G (1972) Excited states of metal complexes and their reactions. In: Edwards JO (ed) Progress in inorganic chemistry. Wiley, Hoboken, pp 1–56

    Google Scholar 

  38. Damrauer NH, Cerullo G, Yeh A et al (1997) Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+. Science 275:54–57

    Article  CAS  Google Scholar 

  39. Henry W, Coates CG, Brady C et al (2008) The early picosecond photophysics of Ru(II) polypyridyl complexes: a tale of two timescales. J Phys Chem A 112:4537–4544. https://doi.org/10.1021/jp711873s

    Article  CAS  Google Scholar 

  40. Cannizzo A, van Mourik F, Gawelda W et al (2006) Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+. Angew Chem Int Ed 45:3174–3176. https://doi.org/10.1002/anie.200600125

    Article  CAS  Google Scholar 

  41. Yeh AT, Shank CV, McCusker JK (2000) Ultrafast electron localization dynamics following photo-induced charge transfer. Science 289:935–938

    Article  CAS  Google Scholar 

  42. Hewitt JT, Vallett PJ, Damrauer NH (2012) Dynamics of the 3MLCT in Ru(II) terpyridyl complexes probed by ultrafast spectroscopy: evidence of excited-state equilibration and interligand electron transfer. J Phys Chem A 116:11536–11547. https://doi.org/10.1021/jp308091t

    Article  CAS  Google Scholar 

  43. Van Houten J, Watts RJ (1976) Temperature dependence of the photophysical and photochemical properties of the tris(2,2′-bipyridyl) ruthenium(II) ion in aqueous solution. J Am Chem Soc 98:4853–4858

    Article  Google Scholar 

  44. Juris A, Balzani V, Belser P, von Zelewsky A (1981) Characterization of the excited state properties of some new photosensitizers of the ruthenium (polypyridine) family. Helv Chim Acta 64:2175–2182

    Article  CAS  Google Scholar 

  45. Amini A, Harriman A, Mayeux A (2004) The triplet excited state of ruthenium(II) bis(2,2′:6′,2″-terpyridine): comparison between experiment and theory. Phys Chem Chem Phys 6:1157–1164. https://doi.org/10.1039/B313526H

    Article  CAS  Google Scholar 

  46. Caspar JV, Meyer TJ (1983) Photochemistry of tris(2,2′-bipyridine) ruthenium(2+) ion (Ru(bpy) 2+3 ). Solvent Effects. J Am Chem Soc 105:5583–5590

    Article  CAS  Google Scholar 

  47. Schoenlein RW, Chattopadhyay S, Chong HHW et al (2000) Generation of femtosecond pulses of synchrotron radiation. Science 287:2237–2240

    Article  CAS  Google Scholar 

  48. Chen LX, Zhang X (2013) Photochemical processes revealed by X-ray transient absorption spectroscopy. J Phys Chem Lett 4:4000–4013. https://doi.org/10.1021/jz401750g

    Article  CAS  Google Scholar 

  49. Bressler C, Chergui M (2004) Ultrafast X-ray absorption spectroscopy. Chem Rev 104:1781–1812. https://doi.org/10.1021/cr0206667

    Article  CAS  Google Scholar 

  50. Bressler C, Chergui M (2010) Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy. Annu Rev Phys Chem 61:263–282. https://doi.org/10.1146/annurev.physchem.012809.103353

    Article  CAS  Google Scholar 

  51. Saes M, Bressler C, Abela R et al (2003) Observing photochemical transients by ultrafast X-ray absorption spectroscopy. Phys Rev Lett 90:47403. https://doi.org/10.1103/PhysRevLett.90.047403

    Article  Google Scholar 

  52. Gawelda W, Johnson M, de Groot FMF et al (2006) Electronic and molecular structure of photoexcited [RuII(bpy)3]2+ probed by picosecond X-ray absorption spectroscopy. J Am Chem Soc 128:5001–5009. https://doi.org/10.1021/ja054932k

    Article  CAS  Google Scholar 

  53. Sato T, Nozawa S, Tomita A et al (2012) Coordination and electronic structure of ruthenium(II) tris-2,2′-bipyridine in the triplet metal-to-ligand charge-transfer excited state observed by picosecond time-resolved Ru K-edge XAFS. J Phys Chem C 116:14232–14236. https://doi.org/10.1021/jp3038285

    Article  CAS  Google Scholar 

  54. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  55. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  56. Andrae D, Haeussermann U, Dolg M et al (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  57. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/b508541a

    Article  CAS  Google Scholar 

  58. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  Google Scholar 

  59. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  Google Scholar 

  60. Rillema DP, Jones DS (1979) Structure of tris(2,2′-bipyridyl)ruthenium(II) hexafluorophosphate, [Ru(bipy)3][PF6]2; X-ray crystallographic determination. J Chem Soc Chem Commun. https://doi.org/10.1039/C39790000849

    Google Scholar 

  61. Bessel CA, See RF, Jameson DL et al (1992) Structural considerations of terdentate ligands: crystal structures of 2,2′:6′,2″-terpyridine and 2,6-bis(pyrazol-1-yl) pyridine. J Chem Soc Dalton Trans 3223–3228. https://doi.org/10.1039/DT9920003223

  62. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  Google Scholar 

  63. Allouche A-R (2011) Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182. https://doi.org/10.1002/jcc.21600

    Article  CAS  Google Scholar 

  64. Ishida H, Tobita S, Hasegawa Y et al (2010) Recent advances in instrumentation for absolute emission quantum yield measurements. Coord Chem Rev 254:2449–2458. https://doi.org/10.1016/j.ccr.2010.04.006

    Article  CAS  Google Scholar 

  65. Petrenko T, Neese F (2007) Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. J Chem Phys 127:164319. https://doi.org/10.1063/1.2770706

    Article  Google Scholar 

  66. Petrenko T, Neese F (2012) Efficient and automatic calculation of optical band shapes and resonance raman spectra for larger molecules within the independent mode displaced harmonic oscillator model. J Chem Phys 137:234107. https://doi.org/10.1063/1.4771959

    Article  Google Scholar 

  67. Bradley PG, Kress N, Hornberger BA et al (1981) Vibrational spectroscopy of the electronically excited state. 5. Time-resolved resonance Raman study of tris(bipyridine)ruthenium(II) and related complexes. Definitive evidence for the “localized” MLCT state. J Am Chem Soc 103:7441–7446

    Article  CAS  Google Scholar 

  68. Herbol HC, Stevenson J, Clancy P (2017) Computational implementation of nudged elastic band, rigid rotation, and corresponding force optimization. J Chem Theory Comput 13:3250–3259. https://doi.org/10.1021/acs.jctc.7b00360

    Article  CAS  Google Scholar 

  69. Smidstrup S, Pedersen A, Stokbro K, Jónsson H (2014) Improved initial guess for minimum energy path calculations. J Chem Phys 140:214106

    Article  Google Scholar 

  70. Chen P, Meyer TJ (1998) Medium effects on charge transfer in metal complexes. Chem Rev 98:1439–1478

    Article  CAS  Google Scholar 

  71. Thompson DW, Fleming CN, Myron BD, Meyer TJ (2007) Rigid medium stabilization of metal-to-ligand charge transfer excited states. J Phys Chem B 111:6930–6941. https://doi.org/10.1021/jp068682l

    Article  CAS  Google Scholar 

  72. Klamt A, Schüürmann G (1993) COSMO: a New approach to dielectric screening in solvents with explicit expressions for the screening energy and its Gradient. J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  73. Ito A, Meyer TJ (2012) The golden rule. application for fun and profit in electron transfer, energy transfer, and excited-state decay. Phys Chem Chem Phys 14:13731–13745. https://doi.org/10.1039/c2cp41658a

    Article  CAS  Google Scholar 

  74. Wrighton M, Morse DL (1974) The nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(i) and related complexes. J Am Chem Soc 96:998–1003

    Article  CAS  Google Scholar 

  75. Liotard D, Penot J-P (1981) Critical paths and passes: application to quantum chemistry. In: Della Dora J, Demongeot J, Lacolle B (eds) Numerical methods in the study of critical phenomena. Springer, Berlin, pp 213–221

    Chapter  Google Scholar 

  76. Liotard DA (1992) Algorithmic tools in the study of semiempirical potential surfaces. Int J Quantum Chem 44:723–741

    Article  CAS  Google Scholar 

  77. Fukui K (1981) The path of chemical reactions-the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  78. Sun Q, Mosquera-Vazquez S, Lawson Daku LM et al (2013) Experimental evidence of ultrafast quenching of the 3MLCT luminescence in ruthenium(II) tris-bipyridyl complexes via a 3dd state. J Am Chem Soc 135:13660–13663. https://doi.org/10.1021/ja407225t

    Article  CAS  Google Scholar 

  79. Mukuta T, Fukazawa N, Murata K et al (2014) Infrared vibrational spectroscopy of [Ru(bpy)2(bpm)]2+ and [Ru(bpy)3]2+ in the excited triplet state. Inorg Chem 53:2481–2490. https://doi.org/10.1021/ic402474t

    Article  CAS  Google Scholar 

  80. Sanz García J, Alary F, Boggio-Pasqua M et al (2015) Establishing the two-photon linkage isomerization mechanism in the nitrosyl complex trans-[RuCl(NO)(py)4]2+ by DFT and TDDFT. Inorg Chem 54:8310–8318. https://doi.org/10.1021/acs.inorgchem.5b00998

    Article  Google Scholar 

  81. Shaik S, Danovich D, Fiedler A et al (1995) Two-state reactivity in organometallic gas-phase ion chemistry. Helv Chim Acta 78:1393–1407

    Article  CAS  Google Scholar 

  82. Schröder D, Shaik S, Schwarz H (2000) Two-state reactivity as a new concept in organometallic chemistry. Acc Chem Res 33:139–145. https://doi.org/10.1021/ar990028j

    Article  Google Scholar 

  83. Marian CM (2012) Spin-orbit coupling and intersystem crossing in molecules. Wiley Interdiscip Rev Comput Mol Sci 2:187–203. https://doi.org/10.1002/wcms.83

    Article  CAS  Google Scholar 

  84. Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99:95–99

    Article  CAS  Google Scholar 

  85. Poli R, Harvey JN (2003) Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem Soc Rev 32:1–8. https://doi.org/10.1039/b200675h

    Article  CAS  Google Scholar 

  86. Harvey JN, Poli R, Smith KM (2003) Understanding the reactivity of transition metal complexes involving multiple spin states. Coord Chem Rev 238:347–361

    Article  Google Scholar 

  87. Harvey JN (2014) Spin-forbidden reactions: computational insight into mechanisms and kinetics: spin-forbidden reactions. Wiley Interdiscip Rev Comput Mol Sci 4:1–14. https://doi.org/10.1002/wcms.1154

    Article  CAS  Google Scholar 

  88. Kreitner C, Heinze K (2016) Excited state decay of cyclometalated polypyridine ruthenium complexes: insight from theory and experiment. Dalton Trans 45:13631–13647. https://doi.org/10.1039/C6DT01989G

    Article  CAS  Google Scholar 

  89. Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164

    Article  CAS  Google Scholar 

  90. Teller E (1937) The crossing of potential surfaces. J Phys Chem 41:109–116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to Jean-Pierre Sauvage on the occasion of his 2016 Nobel Prize. We thank the French Ministry for Higher Education and Research for a PhD fellowship to AS. This work was performed using HPC resources from CALMIP (Grant 2017-[p1112]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle M. Dixon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published as part of the special collection of articles “CHITEL 2017—Paris—France”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soupart, A., Dixon, I.M., Alary, F. et al. DFT rationalization of the room-temperature luminescence properties of Ru(bpy) 2+3 and Ru(tpy) 2+2 : 3MLCT–3MC minimum energy path from NEB calculations and emission spectra from VRES calculations. Theor Chem Acc 137, 37 (2018). https://doi.org/10.1007/s00214-018-2216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2216-1

Keywords

Navigation