Skip to main content
Log in

A theoretical study of ruthenium complexes with 2,2′-biimidazole-like ligands: structural, optical and emissive properties

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The structural and optical properties of five ruthenium complexes, recently synthesized for their photooxidative and photophysical properties, have been studied by means of density functional theory (DFT) and time-dependent DFT (TD-DFT). The structures of [Ru(bpy)2(BiimH2)]2+ (bpy = 2,2’-bipyridine; BiimH2 = 2,2’-biimidazole) 1, [Ru(bpy)2(TMBiimH2)]2+ (TM BiimH2 = 4,5,4’,5’-tetramethyl-2,2’-biimidazole) 5, [Ru(bpy)2(L1H2)]2+ (L1H2 = 4,5-dimethyl-2(N,N-diacetyl)(carboximidamide-1H-imidazole)) 6, [Ru(bpy)2(L2H2)]2+ (L2H2 = N1,N1,N2,N2-tetrakis(acetyl)ethanediimidamide) 7 and [Ru(phen)2(TMBiimH2)]2+ (phen = 1,10’-phenanthroline) 8 have been fully optimized in the electronic ground state as well as in the lowest triplet T1 excited state. The theoretical absorption spectra of the five complexes that compare rather well with the experimental spectra have been analyzed on the basis of TD-DFT calculations without and with spin-orbit coupling (SOC). The deprotonated form [Ru(bpy)2(L2H)]+7d contributes mostly to the experimental absorption spectrum of complex 7. The spectra of all molecules are characterized by the presence of low-lying metal-to-ligand charge transfer (MLCT) excited states between 500 and 400 nm, ligand-centered (LC) excited states on the biimidazole-like ligands between 350 and 300 nm and on the bpy ligands between 300 and 250 nm. The theoretical emission wavelengths deduced from the lowest triplet T1 properties calculated at 661 nm (1), 690 nm (5) and 660 nm (8) reproduce the experimental emission spectra of these molecules characterized by a maximum at 638 nm (1), 646 nm (5) and 652 nm (8). In contrast the low theoretical emission wavelengths (>1000 nm) obtained for complexes 6, 7 and 7d favorable to non-radiative decays explain the low intensity of the experimental emission spectra of these two complexes. The SOC is of little effect in this class of molecules where metal-centered (MC) excited states do not perturb the lowest part of the absorption spectra leading to negligible splitting of low-lying triplet states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Sundberg, R. B. Martin, Interactions of Histidine and other Imidazole Derivatives with Transition Metal Ions in Chemical and Biological Systems, Chem. Rev., 1974, 74, 471–517.

    Article  CAS  Google Scholar 

  2. F. Gao, H. Chao, L. N. Ji, DNA Binding, Photocleavage, and Topoisomerase Inhibition of Functionalized Ruthenium(ii) Polypyridine Complexes, Chem. Biodiversity, 2008, 5, 1962–1979.

    Article  CAS  Google Scholar 

  3. M.-J. Han, L.-H. Gao, Y.-Y. Hu, K.-Z. Wang, Ruthenium(ii) Complex of Hbopip: Synthesis, Characterization, pH-Induced Luminescence “Off-On-Off” Switch, and Avid Binding to DNA, J. Phys. Chem. B, 2006, 110, 2364–2371.

    Article  CAS  Google Scholar 

  4. S.-H. Fang, A.-G. Zhang, C.-C. Ju, L.-H. Gao, K.-Z. Wang, A Triphenylamine-Grafted Imidazo[4,5-f][1,10]phenanthroline Ruthenium(ii) Complex: Acid-Base and Photoelectric Properties, Inorg. Chem., 2010, 49, 3752–3763.

    Article  Google Scholar 

  5. X. Zhu, W. Lu, Y. Zhang, A. Reed, B. Newton, Z. Fan, H. Yu, P.-C. Ray, R. Gao, Imidazole-Modified Porphyrin as a pH-Responsive Sensitizer for Cancer Photodynamic Therapy, Chem. Commun., 2011, 47, 10311–10313.

    Article  CAS  Google Scholar 

  6. A. J. Hallett, N. White, W. Wu, X. Cui, P. N. Horton, S. J. Coles, J. Zhao, S. J. A. Pope, Enhanced Photooxidation Sensitizers: The first Examples of Cyclometalated Pyrene Complexes of Iridium(iii), Chem. Commun., 2012, 48, 10838–10840.

    Article  CAS  Google Scholar 

  7. W. Wu, S. Ji, W. Wu, J. Shao, H. Guo, T. D. James, J. Zhao, Ruthenium(ii) Polyimine-Coumarin Dyad with Non-emissive 3IL Excited State as Sensitizer for Triplet-Triplet Annihilation Based Upconversion, Angew. Chem., Int. Ed., 2011, 50, 8283–8286.

    Article  Google Scholar 

  8. H.-J. Mo, Y. Shen, B.-H. Ye, Selective Recognition of Cyanide Anion via Formation of Multipoint NH and Phenyl CH Hydrogen Bonding with Acyclic Ruthenium Bipyridine Imidazole Receptors in Water, Inorg. Chem., 2012, 51, 7174–7184.

    Article  CAS  Google Scholar 

  9. C. Sheu, P. Kang, S. Khan, C. S. Foote, Low-Temperature Photosensitized Oxidation of a Guanosine Derivative and Formation of an Imidazole Ring-Opened Product, J. Am. Chem. Soc., 2002, 124, 3905–3913.

    Article  CAS  Google Scholar 

  10. M. Davies, Reactive Species Formed on Proteins Exposed to Singlet Oxygen, Photochem. Photobiol. Sci., 2004, 3, 17–25.

    Article  CAS  Google Scholar 

  11. Y. Cui, H. J. Mo, J. C. Chen, Y. L. Niu, Y. R. Zhong, K. C. Zheng, B. H. Ye, Anion-Selective Interaction and Colorimeter by an Optical Metalloreceptor Based on Ruthenium(ii) 2,2’-Biimidazole: Hydrogen Bonding and Proton Transfer, Inorg. Chem., 2007, 46, 6427–6436.

    Article  CAS  Google Scholar 

  12. Y. Cui, Y. L. Niu, M. L. Cao, K. Wang, H. J. Mo, Y. R. Zhong, B. H. Ye, Ruthenium(ii) 2,2’-Bibenzimidazole Complex as a Second-Sphere Receptor for Anions Interaction and Colorimeter, Inorg. Chem., 2008, 47, 5616–5624.

    Article  CAS  Google Scholar 

  13. H. J. Mo, Y. L. Niu, M. Zhang, Z. P. Qiao, B. H. Ye, PhotophysicalElectrochemical and Anion Ssensing Properties of Ru(ii) Bipyridine Complexes with 2,2’-biimidazole-like Ligand, Dalton Trans., 2011, 40, 8218–8225.

    Article  CAS  Google Scholar 

  14. H. J. Mo, J. J. Wu, Z. P. Qiao, B. H. Ye, Interaction Between Biimidazole Complexes of Ruthenium and Acetate: Hydrogen Bonding and Proton transfer, Dalton Trans., 2012, 41, 7026–7036.

    Article  CAS  Google Scholar 

  15. Z.-Z. Li, Y. L. Niu, H. Y. Zhou, H. Y. Chao, B. H. Ye, Visible-Light-Induced Photooxidation of Ruthenium(ii) Complex with 2,2’-Biimidazole-like Ligand by Singlet Oxygen, Inorg. Chem., 2013, 52, 10087–10095.

    Article  CAS  Google Scholar 

  16. A. D. Becke, Density Functional Thermochemistry. III. The role of Exact Exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  17. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem., 1994, 98, 11623–11627.

    Article  CAS  Google Scholar 

  18. E. van Lenthe, E. J. Baerends, Optimized Slater-type Basis Sets for the Elements 1-118, J. Comput. Chem., 2003, 24, 1142–1156.

    Article  Google Scholar 

  19. E. van Lenthe, R. van Leeuwen, E. J. Baerends, J. G. Snijders, Relativistic Regular Two-Component Hamiltonians, Int. J. Quantum Chem., 1996, 57, 281–293.

    Article  Google Scholar 

  20. A. Klamt, G. Schüürmann, COSMO: a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient, J. Chem. Soc., Perkin Trans.1, 1993, 2, 799–805.

    Article  Google Scholar 

  21. A. Klamt, Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena, J. Phys. Chem., 1995, 99, 2224–2235.

    Article  CAS  Google Scholar 

  22. A. Klamt, V. Jones, Treatment of the Outlying Charge in Continuum Solvation Models, J. Chem. Phys., 1996, 105, 9972–9981.

    Article  CAS  Google Scholar 

  23. A. Rosa, E. J. Baerends, S. J. A. van Gisbergen, E. van Lenthe, J. A. Groeneveld, J. G. Snijders, Electronic Spectra of M(CO)6 (M = Cr, Mo, W) Revisited by Relativistic TDDFT Approach, J. Am. Chem. Soc., 1999, 121, 10356–10365.

    Article  CAS  Google Scholar 

  24. C. Pye, T. Ziegler, An Implementation of the Conductor-Like Screening Model of Solvation within the Amsterdam Density Functional Package, Theor. Chem. Acc., 1999, 101, 396–408.

    Article  CAS  Google Scholar 

  25. E. Runge, E. K. U. Gross, Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett., 1984, 52, 997–1000.

    Article  CAS  Google Scholar 

  26. M. Petersilka, U. J. Gossmann, E. K. U. Gross, Excitation Energies from Time-Dependent Density-Functional Theory, Phys. Rev. Lett., 1996, 76, 1212–1215.

    Article  CAS  Google Scholar 

  27. M. J. Peach, D. J. Tozer, Overcoming Low Orbital Overlap and Triplet Instability Problems in TDDFT, J. Phys. Chem. A, 2012, 116, 9783–9789.

    Article  CAS  Google Scholar 

  28. ADF, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2013, https://www.scm.com/Downloads/2013.

    Google Scholar 

  29. M. Chergui, Ultrafast Photophysics of Transition Metal Complexes, Acc. Chem. Res., 2015, 48, 801–808.

    Article  CAS  Google Scholar 

  30. C. Gourlaouen, C. Daniel, Spin-Orbit Effects in Square-Planar Pt(ii) Complexes with Bidentate and Terdentate Ligands: Theoretical Absorption/Emission Spectroscopy, Dalton Trans., 2014, 43, 17806–17819.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Daniel.

Additional information

Electronic supplementary information (ESI) available: Cartesian coordinates of optimized geometries in the S0 and T1 electronic states and associated DFT structures - TD-DFT excited states and transition energies - the structure of complex 7b, and the TD-DFT spectrum of complex 1 with and without SOC-Optimized structures of the lowest T1 electronic states.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, SH., Fang, WH., Cuia, G. et al. A theoretical study of ruthenium complexes with 2,2′-biimidazole-like ligands: structural, optical and emissive properties. Photochem Photobiol Sci 15, 1138–1147 (2016). https://doi.org/10.1039/c6pp00148c

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00148c

Navigation