Skip to main content
Log in

Theoretical study on electronic structures, spectra, and charge transporting properties of two Pt(II) complexes with triazenido ligands

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Two compounds 1-[(2-carboxymethyl)benzene]-3-[2-pyridine]triazene (HL) and 1-[(2-carboxymethyl) benzene]-3-[o-aminobenzoic acid]triazene (H2L') and two corresponding Pt(II) complexes, Pt(PPh3)2(L)Cl (1) and Pt(PPh3)2(L') (2), are theoretically studied by the density functional theory and time-dependent density functional theory. The geometric structure of complex 1 is optimized by B3LYP, PBE0, and M06 methods with the same mixed 6-31G(d)-LANL2DZ basis set. The absorption spectrum of complex 1 is simulated by the above method. As compared with the experimental data, the combination of M06/6-31G(d)-LANL2DZ and TD-M06/6-31G(d)-LANL2DZ is chosen for all other calculations including optimization of the ground-state and the lowest triplet excited state geometries, and the absorption and emission spectra. The detailed electronic transitions are analyzed to understand deeply the properties of spectra. Mobility of holes and electrons in 2 are studied computationally based on the Marcus theory. The ionization potential and electron affinity of complex 2 are calculated to evaluate qualitatively the hole- and electron-injection properties, respectively. Its potential as a dopant for phosphorescent OLEDs is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. José, J., Escobar, N., Alvarado, C.C., Moreno, G.R., Morales, D.M., Walsh, P.J., and Hake, M.P., Inorg. Chem., 2007,vol. 46, no. 15, p. 6182. doi ?10.1021/ic700516p"10.1021/ic700516p

    Article  Google Scholar 

  2. Vrieze, K. and Van, K.G., Comprehensive Coordination Chemistry,: Oxford Pergamon Press, 1987.

    Google Scholar 

  3. Kimball, D.B. and Haley, M.M., Angew. Chem. Int. Ed., 2002, vol. 41, no. 18, p. 3338. doi 10.1002/1521-3773 (20020916)41:18<3338::AID-ANIE3338>3.0.CO;2-7

    Article  CAS  Google Scholar 

  4. Rouzer, C.A., Sabourin, M., Skinner, T.L., Thompson, E.J., Wood, T.O., Chmurny, G.N., Klose, J.R., Roman, J.M., Smith, R.H., and Michejda, C.J., Chem. Res. Toxicol., 1996, vol. 9, no. 1, p. 172. doi 10.1021/tx9500639

    Article  CAS  PubMed  Google Scholar 

  5. Nicolaou, K.C., Boddy, C.N.C., Li, H., Koumbis, A.E., Hughes, R., Natarajan, S., Jain, N.F., Ramanjulu, J.M., Bräse, S., and Solomon, M.E., Chem. Eur. J., 1999, vol. 5, no. 9, p. 2602. doi 10.1002/(SICI)1521-3765 (19990903)5:9<2602::AID-CHEM2602>3.0.CO;2-X

    Article  CAS  Google Scholar 

  6. Bräse, S., Dahmen, S., and Pfefferkorn, M., J. Comb. Chem., 2000, vol. 2, no. 6, p. 710. doi 10.1021/cc000051s

    Article  PubMed  Google Scholar 

  7. Jones, L., Schumm, J.S., and Tour, J.M., J. Org. Chem., 1997, vol. 62, no. 5, p. 1388. doi 10.1021/jo962336q

    Article  CAS  Google Scholar 

  8. Moore, J.S., Acc. Chem. Res., 1997, vol. 30, no. 10, p. 402. doi 10.1021/ar950232g

    Article  CAS  Google Scholar 

  9. Wirschun, W., Winkler, M., Lutz, K., and Jochims, J.C., J. Chem. Soc. Perkin Trans., 1998, vol. 2, no. 11, p. 1755. doi 10.1039/A801797B

    Article  Google Scholar 

  10. Xie, X.H., Chen, J.Y., Xu, W.Q., He, E.X., and Zhan, S.Z., Inorg. Chim. Acta, 2011, vol. 373, no. 1, p. 276. doi 10.1016/j.ica.2011.02.091

    Article  CAS  Google Scholar 

  11. Minaev, B., Baryshnikov, G., and Agren, H., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 5, p. 1719. doi 10.1039/c3cp53806k

    Article  CAS  PubMed  Google Scholar 

  12. Evans, R.C., Douglas, P., Williams, J.A.G., and Rochester, D.L., J. Fluoresc., 2006, vol. 16, no. 2, p. 201. doi 10.1007/s10895-005-0037-9

    Article  CAS  PubMed  Google Scholar 

  13. Siu, P.K. M., Ma, D.L., and Che, C.M., Chem. Comm., 2005, no. 8, p. 1025. doi 10.1039/B414936J

    Google Scholar 

  14. Hush, N.S., J. Chem. Phys., 1958, vol. 28, no. 5, p. 962. doi 10.1063/1.1744305

    Article  CAS  Google Scholar 

  15. Marcus, R.A., J. Chem. Phys., 1956, vol. 24, no. 5, p. 966. doi 10.1063/1.1742723

    Article  CAS  Google Scholar 

  16. Li, X.N., Wu, Z.J., Si, Z.J., Zhang, H.J., Zhou, L., and Liu, X.J., Inorg. Chem., 2009, vol. 48, no. 16, p. 7740. doi 10.1021/ic900585p

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Y., Gahungu, G., Sun, X., Su, J., Qu, X., and Wu, Z., Dalton Trans., 2012, vol. 41, no. 25, p. 7595. doi 10.1039/C2DT30342F

    Article  CAS  PubMed  Google Scholar 

  18. Malagoli, M. and Brédas, J.L., Chem. Phys. Lett., 2000, vol. 327, no. 1, p. 13. doi 10.1016/S0009-2614(00) 00757-0

    Article  CAS  Google Scholar 

  19. Lin, B.C., Cheng, C.P., and Lao, Z.P.M., J. Phys. Chem.(A), 2003, vol. 107, no. 26, p. 5241. doi 10.1021/jp0304529

    Article  CAS  Google Scholar 

  20. Hutchison, G.R., Ratner, M.A., and Marks, T.J., J. Am. Chem. Soc., 2005, vol. 127, no. 7, p. 2339. doi 10.1021/ja0461421

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Y.Q., Sun, X.B., Gahungu, G., Qu, X.C., Wang, Y., and Wu, Z.J., J. Mater. Chem.(C), 2013, vol. 1, no. 23, p. 3700. doi 10.1039/C3TC30206G

    Article  CAS  Google Scholar 

  22. Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, nos. 1–3, p. 215. doi 10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  23. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. doi 10.1063/1.464913

    Article  CAS  Google Scholar 

  24. Lee, C., Yang, W., and Parr, R.G., Phys. Rev.(B), 1988, vol. 37, no. 2, p. 785. doi 10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  25. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frich, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, p. 11623. doi 10.1021/j100096a001

    Article  CAS  Google Scholar 

  26. Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, no. 13, p. 6158. doi 10.1063/1.478522

    Article  CAS  Google Scholar 

  27. Ernzerhof, M. and Scuseria, G.E., J. Chem. Phys., 1999, vol. 110, no. 11, p. 5029. doi 10.1063/1.478401

    Article  CAS  Google Scholar 

  28. Wang, L., Yu, X.H., Zhao, J.X., Zhang, Y.X., He, H.Q., and Zhang, J.L., Synthetic Met., 2013, vol. 175, p. 174. doi 10.1016/j.synthmet.2013.05.016

    Article  CAS  Google Scholar 

  29. Wang, L., Zhang, Y.X., He, H.Q., and Zhang, J.L., Synthetic Met., 2013, vol. 167, p. 51. doi 10.1016/j.synthmet.2013.02.004

    Article  CAS  Google Scholar 

  30. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, no. 1, p. 270. doi 10.1063/1.448799

    Article  CAS  Google Scholar 

  31. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, no. 1, p. 299. doi 10.1063/1.448975

    Article  CAS  Google Scholar 

  32. Hehre, W.J., Ditchfield, R., and Pople, J.A., J. Chem. Phys., 1972, vol. 56, no. 5, p. 2257. doi 10.1063/1.1677527

    Article  CAS  Google Scholar 

  33. Liu, Y.Q., Sun, X.B., Si, Y.L., Qu, X.C., Wang, Y., and Wu, Z.J., RSC Adv., 2014, vol. 4, no. 12, p. 6284. doi 10.1039/C3RA46804F

    Article  CAS  Google Scholar 

  34. Li, L.J., Liu, X.J., Feng, J., Song, S.Y., and Zhang, H.J., J. Mol. Model., 2014, 20, no. 10, p. 1. doi 10.1007/s00894-014-2437-8

    Google Scholar 

  35. Eddin, A.C., Planchat, A., Mennucci, B., Adamo, C., and Jacquemin, D., J. Chem. Theory Comput., 2013, vol. 9, no. 6, p. 2749. doi 10.1021/ct4000795

    Article  Google Scholar 

  36. Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., and Preuss, H., Theor. Chim. Acta, 1990, vol. 77, no. 2, p. 123. doi 10.1007/BF01114537

    Article  CAS  Google Scholar 

  37. Miertus, Š., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, no. 1, p. 117. doi 10.1016/0301-0104(81) 85090-2

    Article  CAS  Google Scholar 

  38. Tomasi, J. and Persico, M., Chem. Rev., 1994, vol. 94, no. 7, p. 2027. doi 10.1021/cr00031a013

    Article  CAS  Google Scholar 

  39. Verdolino, V., Cammi, R., Munk, B.H., and Schlegel, H.B., J. Phys. Chem. (B), 2008, vol. 112, no. 51, p. 16860. doi 10.1021/jp8068877

    Article  CAS  Google Scholar 

  40. Scalmani, G., Barone, V., Kudin, K.N., Pomelli, C.S., Scuseria, G.E., and Frisch, M.J., Theor. Chem. Acc., 2004, vol. 111, nos. 2–6, p. 90. doi 10.1007/s00214-003- 0527-2

    Article  CAS  Google Scholar 

  41. Kui, S.C.F., Chow, P.K., Cheng, G., Kwok, C.C., Kwong, C.L., Low, K.H., and Che, C.M., Chem. Commun., 2013, vol. 49, no. 15, p. 1497. doi 10.1039/C2CC37862K

    Article  CAS  Google Scholar 

  42. Wu, Y., Shan, G.G., Li, H.B., Wu, S.X., Ren, X.Y., Geng, Y., and Su, Z.M., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 4, p. 2438. doi 10.1039/C4CP04919E

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, L., Tian, L., Li, M., He, R., and Shen, W., Dalton Trans., 2014, vol. 43, no. 17, p. 6500. doi 10.1039/C3DT53209G

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, L., Li, J. et al. Theoretical study on electronic structures, spectra, and charge transporting properties of two Pt(II) complexes with triazenido ligands. Russ J Gen Chem 86, 2817–2826 (2016). https://doi.org/10.1134/S1070363216120458

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216120458

Keywords

Navigation