Skip to main content
Log in

Multi-configuration spin-coupled description of organometallic reactions: a comparative study of the addition of RMBr (M = Mg and Zn) to acetone

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The large differences in the reactivity between methyl and allyl Grignard reagents and allylzinc bromide in their addition reactions to acetone are theoretically studied. The chemical nature of the transition states is revealed through multi-configuration spin-coupled (MC-SC) calculations. The additional spin-coupled configuration proves to be instrumental in the description of the electronic rearrangements that lead to the reaction. The resulting singly occupied overlapping orbitals indicate clearly that in all cases the transition states present a pronounced carbanion character. The greater reactivity of Grignard reagents is associated with a product-like nature of the transition state, while the zinc reagent presents a reactant-like transition state. Through the analysis of the wave functions around the transition state geometries, we are able to provide unique insights into the electronic inner workings of the alkylation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Truhlar DG (2007) J Comput Chem 28:73–86

    Article  CAS  Google Scholar 

  2. Goddard WA III (1972) J Am Chem Soc 94:793–807

    Article  CAS  Google Scholar 

  3. Steigerwald ML, Goddard WA III (1984) J Am Chem Soc 106:308–311

    Article  CAS  Google Scholar 

  4. Upton TH, Rappe AK (1985) J Am Chem Soc 107:1206–1218

    Article  CAS  Google Scholar 

  5. Van der Hart WJ, Oosterhoff LJ, Mulder JJC (1972) J Am Chem Soc 94:5724–5730

    Article  Google Scholar 

  6. Shaik S, Hiberty PC (1995) Adv Quantum Chem 26:99–163

    Article  CAS  Google Scholar 

  7. Cook M, Karplus M (1987) J Phys Chem 91:31–37

    Article  CAS  Google Scholar 

  8. Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383–5403

    Article  CAS  Google Scholar 

  9. Perrin L, Carr KJT, McKay D, McMullin CL, MacGregor SA, Eisenstein O (2015) Struct Bond 167:1–37

    Article  Google Scholar 

  10. Silverman GS, Rakita PE (1996) Handbook of Grignard reagents. Marcel Dekker, New York

    Book  Google Scholar 

  11. Richey HG (2000) Grignard reagents: new developments. Wiley, New York

    Google Scholar 

  12. Harvley FR, Patai S (eds) (1985) Carbon–carbon bond formation using organometallic compounds of zinc, cadmium, and mercury, the chemistry of the metal–carbon bond, vol 3. Wiley, New York

    Google Scholar 

  13. Courtois G, Miginiac L (1974) J Organomet Chem 69:1–44

    Article  CAS  Google Scholar 

  14. Fürstner A (1989) Synthesis 1989:571–590

    Article  Google Scholar 

  15. Rapport Z, Marek I (2006) The chemistry of organozinc compounds: R–Zn. Wiley, Chichester, p 288

    Book  Google Scholar 

  16. Zong H, Huang H, Liu J, Bian G, Song L (2012) J Org Chem 77:4645–4652

    Article  CAS  Google Scholar 

  17. Ashby EC (1980) Pure Appl Chem 52:545–569

    Article  CAS  Google Scholar 

  18. Henriques AM, Barbosa AGH (2011) J Phys Chem A 115:12259–12270

    Article  CAS  Google Scholar 

  19. Vegunta SSS, Ngunjiri JN, Flake JC (2009) Langmuir 25:12750–12756

    Article  CAS  Google Scholar 

  20. Ashby EC, Yu SH, Beach RG (1970) J Am Chem Soc 92:433–435

    Article  CAS  Google Scholar 

  21. Ashby EC, Goel AB (1981) J Am Chem Soc 103:4983–4985

    Article  CAS  Google Scholar 

  22. Hoffmann RW, Hölzer B (2001) Chem Commun 2001:491–492

    Article  Google Scholar 

  23. Holm T, Osztrovsky G, Madsen R (2010) Org Biomol Chem 8:3402–3404

    Article  Google Scholar 

  24. Gajewski JJ, Bacian W, Harris NJ, Olson LP, Gajewski JP (1999) J Am Chem Soc 121:326–334

    Article  CAS  Google Scholar 

  25. Zhang WC, Li CJ (1999) J Org Chem 64:3230–3236

    Article  CAS  Google Scholar 

  26. Dam JH, Fristrup P, Madsen R (2008) J Org Chem 73:3228–3235

    Article  CAS  Google Scholar 

  27. Holm T (1983) Acta Chem Scand 37-b:567–584

    Article  Google Scholar 

  28. Holm T (1994) Acta Chem Scand 48:362–366

    Article  CAS  Google Scholar 

  29. Eberson L (1984) Acta Chem Scand 38-b:439–459

    Article  Google Scholar 

  30. Yamataka H, Matsuyama T, Hanafusa T (1989) J Am Chem Soc 111:4912–4918

    Article  CAS  Google Scholar 

  31. Yamataka H, Shimizu M (2002) Bull Chem Soc Jpn 75:127

    Article  CAS  Google Scholar 

  32. Yamataka H, Shimizu M (2004) Bull Chem Soc Jpn 77:1757

    Article  Google Scholar 

  33. Otte DAL, Woerpel KA (2015) Org Lett 17:3906–3909

    Article  CAS  Google Scholar 

  34. Ashby EC, Laemmle J, Neumann HM (1974) Acc Chem Res 7:272–280

    Article  CAS  Google Scholar 

  35. Evans DA (1988) Science 240:420–426

    Article  CAS  Google Scholar 

  36. Zhang N, Samanta SR, Rosen BM, Percec V (2014) Chem Rev 114:5848–5958

    Article  CAS  Google Scholar 

  37. Sassian M, Panov D, Tuulmets A (2002) Appl Organomet Chem 16:525–529

    Article  CAS  Google Scholar 

  38. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  39. Cossi M, Scalmani G, Rega N, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  40. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga S, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  41. Peng CY, Schlegel HB (1993) Isr J Chem 33:449–454

    Article  CAS  Google Scholar 

  42. Becke AD (1992) J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai T, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austrin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09, Revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  44. Cooper DL, Gerratt J, Raimondi M (1987) Adv Chem Phys 69:319–397

    CAS  Google Scholar 

  45. Cooper DL, Gerratt J, Raimondi M (1991) Chem Rev 91:929–964

    Article  CAS  Google Scholar 

  46. Goddard WA III, Dunning TH, Hunt WJ, Hay PJ (1972) Acc Chem Res 6:368–376

    Article  Google Scholar 

  47. Dunning TH, Xu LT, Takeshita TY, Lindquist BA (2016) J Phys Chem A 120:1763–1778

    Article  CAS  Google Scholar 

  48. Cooper DL, Gerratt J, Raimondi M (1986) Nature 323:699–701

    Article  CAS  Google Scholar 

  49. Fleming FP, Barbosa AGH, Esteves PM (2006) J Phys Chem A 110:11903–11905

    Article  CAS  Google Scholar 

  50. Barbosa AGH, Barcelos AM (2009) Theor Chem Acc 122:51–66

    Article  CAS  Google Scholar 

  51. Karadakov PB, Cooper DL (2009) Int Rev Phys Chem 28:169–206

    Article  Google Scholar 

  52. Hill JG, Karadakov PB, Cooper DL (2006) Theor Chem Acc 115:212–220

    Article  CAS  Google Scholar 

  53. Blavins JJ, Karadakov PB, Cooper DL (2001) J Org Chem 66:4285–4292

    Article  CAS  Google Scholar 

  54. Karadakov PB, Cooper DL, Gerratt J (1998) J Am Chem Soc 120:3975–3981

    Article  CAS  Google Scholar 

  55. Voter AF, Goddard WA III (1986) J Am Chem Soc 108:2830–2837

    Article  CAS  Google Scholar 

  56. Penotti FE (2000) Int J Quantum Chem 78:378–397

    Article  CAS  Google Scholar 

  57. Barbosa AGH, Monteiro JGS (2012) Theor Chem Acc 131:1297–1323

    Article  Google Scholar 

  58. Pyper NC, Gerratt J (1977) Proc R Soc A355:407–439

    Article  Google Scholar 

  59. Penotti FE (1993) Int J Quantum Chem 46:535–576

    Article  CAS  Google Scholar 

  60. Penotti FE (1996) Int J Quantum Chem 59:349–378

    Article  CAS  Google Scholar 

  61. Li J, McWeeny R (2002) Int J Quantum Chem 89:208–216

    Article  CAS  Google Scholar 

  62. Li J, Duke B, McWeeny R (2006) VB2000 Version 1.8(R2). SciNet Technologies, San Diego

    Google Scholar 

  63. McDouall JJW (1992) Theor Chim Acta 83:339–350

    Article  CAS  Google Scholar 

  64. Hiberty PC, Flament JP, Noizet E (1992) Chem Phys Lett 189:259–265

    Article  CAS  Google Scholar 

  65. Felix C, Laurent A, Mison P (1995) J Fluorine Chem 70:71–82

    Article  CAS  Google Scholar 

  66. Holm T (2000) J Org Chem 65:1188–1192

    Article  CAS  Google Scholar 

  67. Chen JLY, Scott HK, Hesse MJ, Willis CL, Aggarwal VK (2013) J Am Chem Soc 135:5316–5319

    Article  CAS  Google Scholar 

  68. Bode BM, Gordon MS (1998) J Mol Graph Model 16:133–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge FAPERJ and PETROBRÁS/CENPES for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André G. H. Barbosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriques, A.M., Monteiro, J.G.S. & Barbosa, A.G.H. Multi-configuration spin-coupled description of organometallic reactions: a comparative study of the addition of RMBr (M = Mg and Zn) to acetone. Theor Chem Acc 136, 4 (2017). https://doi.org/10.1007/s00214-016-2027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2027-1

Keywords

Navigation