Skip to main content
Log in

On the electronic structure of the diazomethane molecule

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic structure and chemical bonding in the diazomethane molecule are investigated using full-valence generalized valence bond (GVB) methods. We point out that an ab initio-based bonding model must correspond directly to a wave function that yields at least qualitatively corrects values for the structural parameters of a molecule, that is, molecular geometry, vibrational frequencies, and dipole moment. However, in the case of diazomethane, when trying to emulate the bonding models proposed in the literature through full-valence GVB wave functions, we found out that all of them are directly associated with optimized molecular geometries that are saddle points in the molecular potential energy surface. This spurious behavior is corrected by a multiconfiguration–self-consistent field (MCSCF) wave function that incorporates an enlarged “pi-like” active space enabling a complete active space self-consistent field (CASSCF) block, with more active orbitals than electrons, together with a “sigma-like” generalized valence bond with restricted configuration interaction (GVB-RCI) block. With this wave function, we are able to generate the best calculated set of harmonic frequencies to date for the diazomethane molecule. The physical effects that are important for the correct description of its electronic and vibrational structure are then discussed using a series of MCSCF wave functions. This result leads to a decomposition of the electronic wave function into diabatic GVB-RCI chemical structures along the CH2 wagging mode illustrating the necessity to understand the chemical bonding in this molecule as a superposition of bonding patterns. Some structural properties of diazomethane and diazocompounds are then successfully analyzed using our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huisgen R (1963) Angew Chem Int Ed Eng 2:565

    Article  Google Scholar 

  2. Goddard WA III (1967) Phys Rev 157:81

    Article  CAS  Google Scholar 

  3. Goddard WA III, Dunning TH, Hunt WJ, Hay PJ (1972) Acc Chem Res 6:368

    Article  Google Scholar 

  4. Walch SP, Goddard WA III (1975) J Am Chem Soc 97:5319

    Article  CAS  Google Scholar 

  5. Cooper DL, Gerratt J, Raimondi M, Wright SC (1987) Chem Phys Lett 138:296

    Article  CAS  Google Scholar 

  6. Papakondylis A, Mavridis A (1999) J Phys Chem A 103:1255

    Article  CAS  Google Scholar 

  7. Moore CB, Pimentel GC (1964) J Chem Phys 41:3504

    Article  CAS  Google Scholar 

  8. Gerratt J (1971) Adv At Mol Phys 7:141

    Article  Google Scholar 

  9. Cooper DL, Gerratt J, Raimondi M (1989) J Chem Soc Perkin Trans 2:1187

    Google Scholar 

  10. Malcolm NOJ, McDouall JJW (1994) J Comput Chem 15:1365

    Article  CAS  Google Scholar 

  11. Windhorn L, Yeston JS, Witte T, Fuβ W, Motzkus M, Proch D, Kompa KL, Moore CB (2003) J Chem Phys 119:641

    Article  CAS  Google Scholar 

  12. Schmidt MW et al (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  13. Ivanic J, Ruedenberg K (2001) Theor Chem Acc 106:339

    Article  CAS  Google Scholar 

  14. Ivanic J (2003) J Chem Phys 119:9364

    Article  CAS  Google Scholar 

  15. Shepard R (1987) Adv Chem Phys 69:63

    Article  CAS  Google Scholar 

  16. Carter EA, Goddard WA III (1988) J Chem Phys 88:3132

    Article  CAS  Google Scholar 

  17. Faglioni F, Goddard WA III (1999) Int J Quantum Chem 73:1

    Article  CAS  Google Scholar 

  18. Cullen J (1999) J Comput Chem 20:999

    Article  CAS  Google Scholar 

  19. Barbosa AGH, Barcelos AM (2009) Theor Chem Acc 122:51

    Article  CAS  Google Scholar 

  20. Pipek J, Mezey PG (1989) J Chem Phys 90:4916

    Article  CAS  Google Scholar 

  21. Carter EA, Goddard WA III (1986) J Am Chem Soc 108:2180

    Article  CAS  Google Scholar 

  22. Henriques AM, Barbosa AGH (2011) J Phys Chem A 115:12259

    Article  CAS  Google Scholar 

  23. Cox AP, Thomas LF, Sheridan G (1958) Nature (London) 181:1000

    Article  CAS  Google Scholar 

  24. Sheridan G (1962) Adv Mol Spectrosc. In: Proceedings of the IVth International Meeting Moleular Spectroscopy 1:139

  25. Boldyrev AI, Schleyer PVR, Higgins D, Thomson C, Kramarenko SS (1992) J Comput Chem 13:1066

    Article  CAS  Google Scholar 

  26. Habas MP, Dargelos A (1995) Chem Phys 199:177

    Article  CAS  Google Scholar 

  27. Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic Press, New York

    Google Scholar 

  28. Thorsteinsson T, Cooper DL (1996) Theor Chim Acta 94:233

    CAS  Google Scholar 

  29. McLean AD, Lengsfield BH III, Pacansky J, Ellinger Y (1985) J Chem Phys 83:3567

    Article  CAS  Google Scholar 

  30. Davidson ER, Borden WT (1983) J Phys Chem 87:4783

    Article  CAS  Google Scholar 

  31. Moore CB, Pimentel GC (1964) J Chem Phys 40:329

    Article  CAS  Google Scholar 

  32. Khlifi M, Paillous P, Bruston P, Raulin F (1996) Icarus 124:318

    Article  CAS  Google Scholar 

  33. Baraille I, Larrieu C, Dargelos A, Chaillet M (2001) Chem Phys 273:91

    Article  CAS  Google Scholar 

  34. Pfeiffer F, Guntram R (2011) J Phys Chem A 115:11050

    Article  CAS  Google Scholar 

  35. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  37. Puzzarini C, Gambi A (2012) Theor Chem Acc 131:1135

    Article  Google Scholar 

  38. Monteiro JGS, Barbosa AGH, to be submitted

  39. Eisfeld W, Morokuma K (2000) J Chem Phys 113:5587

    Article  CAS  Google Scholar 

  40. Olsen J, Yeager DL, Jørgensen P (1983) Adv Chem Phys 54:1

    Article  CAS  Google Scholar 

  41. Crawford TD, Stanton JF, Allen WD, Schaefer HF (1997) J Chem Phys 107:10626

    Article  CAS  Google Scholar 

  42. Kerkines ISK, Čársky P, Mavridis A (2005) J Phys Chem A 109:10148

    Article  CAS  Google Scholar 

  43. Bitzer RS, Barbosa AGH, da Silva CO, Nascimento MAC (2005) Carbohydr Res 340:2171

    Article  CAS  Google Scholar 

  44. Malmqvist PA (1986) Int J Quantum Chem 30:479

    Article  CAS  Google Scholar 

  45. Atchity GJ, Ruedenberg K (1999) J Chem Phys 111:2910

    Article  CAS  Google Scholar 

  46. Kyvala M (2009) Int J Quantum Chem 109:1200

    Article  CAS  Google Scholar 

  47. Barbosa AGH, Nascimento MAC (2004) Int J Quantum Chem 99:317

    Article  CAS  Google Scholar 

  48. Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  49. Wu W, Su PF, Shaik S, Hiberty PC (2011) Chem Rev 111:7557

    Article  CAS  Google Scholar 

  50. Harcourt RD, Roso W (1978) Can J Chem 56:1093

    Article  CAS  Google Scholar 

  51. Truhlar DG (2007) J Chem Educ 84:781

    Article  CAS  Google Scholar 

  52. Zielinski M, Havenith RWA, Jenneskens LW, van Lenthe JH (2010) Theor Chem Acc 127:19

    Article  CAS  Google Scholar 

  53. Cooper DL, Gerratt J, Raimondi M (1986) Nature 323:699

    Article  CAS  Google Scholar 

  54. Fleming FP, Barbosa AGH, Esteves PM (2006) J Phys Chem A 110:11903

    Article  CAS  Google Scholar 

  55. Cardozo TM, Nascimento MAC (2009) J Chem Phys 130:104102

    Article  Google Scholar 

  56. Pyper NC, Gerratt J (1977) Proc R Soc Lond A 355:406

    Google Scholar 

  57. Voter AF, Goddard WA III (1981) Chem Phys 57:253

    Article  CAS  Google Scholar 

  58. Hollauer E, Nascimento MAC (1993) J Chem Phys 99:1207

    Article  CAS  Google Scholar 

  59. Penotti FE (1996) Int J Quantum Chem 59:349

    Article  CAS  Google Scholar 

  60. Clarke NJ, Raimondi M, Sironi M, Gerratt J, Cooper DL (1998) Theor Chem Acc 99:8

    Article  CAS  Google Scholar 

  61. Hiberty PC, Shaik S (2002) Theor Chem Acc 108:255

    Article  CAS  Google Scholar 

  62. Blavins JJ, Karadakov PB, Cooper DL (2001) J Org Chem 66:4285

    Article  CAS  Google Scholar 

  63. Braïda B, Walter C, Engels B, Hiberty PC (2010) J Am Chem Soc 132:7631

    Article  Google Scholar 

  64. Carter EA, Goddard WA III (1988) J Chem Phys 88:1752

    Article  CAS  Google Scholar 

  65. Carter EA, Goddard WA III (1986) J Phys Chem 90:998

    Article  CAS  Google Scholar 

  66. Doyle MP, Duffy R, Ratnikov M, Zhou L (2010) Chem Rev 110:704

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. V. F. Ferreira for helpful discussions and support in the early stages of this work. The authors also acknowledge FAPERJ and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André G. H. Barbosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, A.G.H., Monteiro, J.G.S. On the electronic structure of the diazomethane molecule. Theor Chem Acc 131, 1297 (2012). https://doi.org/10.1007/s00214-012-1297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1297-5

Keywords

Navigation