Skip to main content
Log in

The electronic structure of the F2, Cl2, Br2 molecules: the description of charge-shift bonding within the generalized valence bond ansatz

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this paper, we present an alternative picture for the electronic structure of dihalogen molecules and for the physical origin of the “charge-shift bonding” effect. Absolute energies, binding energies, quadrupole moments and harmonic frequencies are determined for a hierarchy of methods from Hartree-Fock (HF), many forms of generalized valence bond (GVB) wavefunctions to Multi-Reference-MP2. All valence electron pairs are explicitly correlated in the GVB wavefunctions. It is shown that HF charge densities for the fluorine molecule are extremely inaccurate. This fact causes the HF canonical orbital basis for this molecule to be inadequate in low order correlation treatments in spite of the fact that there are no “near degeneracies” at the equilibrium distance. The accurate description charge fluctuation lone pair repulsions are essential for a proper assessment of the fluorine molecule binding energy, bond distance and harmonic frequency. These properties are well described by lifting the perfect-pairing restriction in a full-valence orbital optimized GVB-RCI (restricted-configuration-interaction) wavefunction. The accurate calculation of electron–electron cusps is of lesser importance in the description of the electronic structure of the fluorine molecule than usually considered. An analysis of the lone pair GVB natural orbitals provides a clear-cut understanding on the differences between fluorine and the other dihalogen molecules. Within our model, we conclude that among the dihalogen molecules the charge-shift bonding concept is meaningful only for the fluorine molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, IV. Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  2. Shaik S, Maitre P, Sini G, Hiberty PC (1992) J Am Chem Soc 114:7861. doi:10.1021/ja00046a035

    Article  CAS  Google Scholar 

  3. Raimondi M, Simonetta M, Tantardini GF (1985) Comput Phys Rep 2:171. doi:10.1016/0167-7977(85)90008-5

    Article  CAS  Google Scholar 

  4. McWeeny R (1992) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  5. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  6. Hiberty PC, Flament JP, Noizet E (1992) Chem Phys Lett 189:259. doi:10.1016/0009-2614(92)85136-X

    Article  CAS  Google Scholar 

  7. Hiberty PC, Humbel S, Byrman CP, van Lenthe JH (1994) J Chem Phys 101:5969. doi:10.1063/1.468459

    Article  CAS  Google Scholar 

  8. Shaik S, Hiberty PC (2002) In: Cooper DL (ed) Valence bond theory. Elsevier, Amsterdam

  9. Hiberty PC, Shaik S (2002) Theor Chem Acc 108:255. doi:10.1007/s00214-002-0364-8

    CAS  Google Scholar 

  10. Li J, McWeeny R (2002) Int J Quantum Chem 89:208. doi:10.1002/qua.10293

    Article  CAS  Google Scholar 

  11. Li J, Duke B, McWeeny R (2006) VB2000 v. 1.8(R2). SciNet Technologies, San Diego

  12. McDouall JJW (1992) Theor Chim Acta 83:339. doi:10.1007/BF01113060

    Article  CAS  Google Scholar 

  13. McDouall JJW (1993) Theor Chim Acta 85:395. doi:10.1007/BF01113433

    Article  CAS  Google Scholar 

  14. McDouall JJW (2002) In: Cooper DL (ed) Valence bond theory. Elsevier, Amsterdam

  15. Shaik S, Danovich D, Silvi B, Lauvergnat DL, Hiberty PC (2005) Chem Eur J 11:6358. doi:10.1002/chem.200500265

    Article  CAS  Google Scholar 

  16. Hiberty PC, Megret C, Song L, Wu W, Shaik S (2006) J Am Chem Soc 128:2836. doi:10.1021/ja053130m

    Article  CAS  Google Scholar 

  17. Hiberty PC, Ramozzi R, Song L, Wu W, Shaik S (2007) Faraday discuss 135:261. doi:10.1039/b605161h

    Article  CAS  Google Scholar 

  18. Goddard WAIII, Dunning TH, Hunt WJ, Hay PJ (1972) Acc Chem Res 6:368. doi:10.1021/ar50071a002

    Article  Google Scholar 

  19. Heisenberg W (1926) Z Phys 38:411. doi:10.1007/BF01397160

    Article  Google Scholar 

  20. Heisenberg W (1926) Z Phys 39:501

    Google Scholar 

  21. Wigner E (1926) Z Phys 40:883

    Google Scholar 

  22. Heitler W, London F (1927) Z Phys 44:445

    Google Scholar 

  23. Coulson CA, Fischer I (1949) Philos Mag 40:383

    Google Scholar 

  24. Goddard WAIII (1967) Phys Rev 157:73. doi:10.1103/PhysRev.157.73

    Article  CAS  Google Scholar 

  25. Goddard WAIII (1967) Phys Rev 157:81. doi:10.1103/PhysRev.157.81

    Article  CAS  Google Scholar 

  26. Goddard WAIII (1968) J Chem Phys 48:450. doi:10.1063/1.1667943

    Article  CAS  Google Scholar 

  27. Goddard WAIII (1968) J Chem Phys 48:5337. doi:10.1063/1.1668225

    Article  CAS  Google Scholar 

  28. Goddard WAIII, Ladner RC (1969) J Chem Phys 51:1073. doi:10.1063/1.1672106

    Article  Google Scholar 

  29. Gerratt J (1971) Adv At Mol Phys 7:141

    Google Scholar 

  30. Cooper DL, Gerratt J, Raimondi M (1987) Adv Chem Phys 69:319. doi:10.1002/9780470142943.ch6

    Article  CAS  Google Scholar 

  31. Goddard WAIII, Harding LB (1978) Annu Rev Phys Chem 29:363. doi:10.1146/annurev.pc.29.100178.002051

    Article  CAS  Google Scholar 

  32. Cooper DL, Gerratt J, Raimondi M (1991) Chem Rev 91:929. doi:10.1021/cr00005a014

    Article  CAS  Google Scholar 

  33. Gerratt J, Cooper DL, Karadakov PB, Raimondi M (1997) Chem Soc Rev 26:87. doi:10.1039/cs9972600087

    Article  CAS  Google Scholar 

  34. Bobrowicz FW, Goddard WA III (1977) In: Schaeffer HF (ed) Methods of electronic structure theory. Plenum Press, New York

  35. Arai T (1960) J Chem Phys 33:95. doi:10.1063/1.1731142

    Article  CAS  Google Scholar 

  36. Hurley AC, Lennard-Jones J, Pople JA (1953) Proc R Soc A 220:446. doi:10.1098/rspa.1953.0198

    Article  CAS  Google Scholar 

  37. Surján PR (1999) Top Curr Chem 203:63. doi:10.1007/3-540-48972-X_4

    Article  Google Scholar 

  38. Shepard R (1987) Adv Chem Phys 69:63. doi:10.1002/9780470142943.ch2

    Article  CAS  Google Scholar 

  39. Matsen FA (1964) Adv Quantum Chem 1:59. doi:10.1016/S0065-3276(08)60375-5

    Article  CAS  Google Scholar 

  40. Matsen FA (1970) J Am Chem Soc 92:3525. doi:10.1021/ja00715a001

    Article  CAS  Google Scholar 

  41. Yaffe LG, Goddard WAIII (1976) Phys Rev A 13:1682. doi:10.1103/PhysRevA.13.1682

    Article  CAS  Google Scholar 

  42. Dunning TH, Cartwright DC, Hunt WJ, Hay PJ, Bobrowicz FW (1976) J Chem Phys 64:4755. doi:10.1063/1.432062

    Article  CAS  Google Scholar 

  43. Bobrowicz FW (1981) In Dupuis M (ed) Recent developments and applications of multiconfigurational Hartree-Fock methods. NRCC, Lawrence Berkeley Laboratory, University of California, Berkeley

  44. Carter EA, Goddard WAIII (1988) J Chem Phys 88:3132. doi:10.1063/1.453957

    Article  CAS  Google Scholar 

  45. Faglioni F, Goddard WAIII (1999) Int J Quantum Chem 73:1. doi:10.1002/(SICI)1097-461X(1999)73:1<1::AID-QUA1>3.0.CO;2-0

    Article  CAS  Google Scholar 

  46. Barbosa AGH, Fleming FP (unpublished)

  47. Van Voorhis T, Head-Gordon M (2001) J Chem Phys 115:7814. doi:10.1063/1.1406536

    Article  CAS  Google Scholar 

  48. Cullen J (1999) J Comput Chem 20:999. doi:10.1002/(SICI)1096-987X(19990730)20:10<999::AID-JCC2>3.0.CO;2-A

    Article  CAS  Google Scholar 

  49. Roos BO (1987) Adv Chem Phys 69:399. doi:10.1002/9780470142943.ch7

    Article  CAS  Google Scholar 

  50. Ruedenberg K, Cheung LM, Elbert ST (1979) Int J Quantum Chem 16:1069. doi:10.1002/qua.560160511

    Article  CAS  Google Scholar 

  51. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157. doi:10.1016/0301-0104(80)80045-0

    Article  CAS  Google Scholar 

  52. Levy B, Berthier G (1968) Int J Quantum Chem 2:307. doi:10.1002/qua.560020210

    Article  CAS  Google Scholar 

  53. Barbosa AGH, Nascimento MAC (2004) Int J Quantum Chem 99:317. doi:10.1002/qua.10866

    Article  CAS  Google Scholar 

  54. Nakano H (1993) J Chem Phys 99:7983. doi:10.1063/1.465674

    Article  CAS  Google Scholar 

  55. Schmidt MW et al (1993) J Comput Chem 14:1347. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  56. Ivanic J, Ruedenberg K (2001) Theor Chem Acc 106:399

    Article  Google Scholar 

  57. Ivanic J (2003) J Chem Phys 119:9364. doi:10.1063/1.1615954

    Article  CAS  Google Scholar 

  58. Pipek J, Mezey PG (1989) J Chem Phys 90:4916. doi:10.1063/1.456588

    Article  CAS  Google Scholar 

  59. Peterson KA, Kendall RA, Dunning TH Jr (1993) J Chem Phys 99:9790. doi:10.1063/1.465461

    Article  CAS  Google Scholar 

  60. Schwarz WHE, Ruedenberg K, Mensching L, Miller LL, Valtazanos P, von Niessen W (1989) Angew Chem Int Ed Engl 28:597. doi:10.1002/anie.198905971

    Article  Google Scholar 

  61. Mensching L, von Niessen W, Valtazanos P, Ruedenberg K, Schwarz WHE (1989) J Am Chem Soc 111:6933. doi:10.1021/ja00200a007

    Article  CAS  Google Scholar 

  62. Sanderson RT (1983) Polar covalence. Academic Press, New York

    Google Scholar 

  63. Lauvergnat DL, Hiberty PC (1995) J Mol Struct Theochem 338:283. doi:10.1016/0166-1280(94)04067-3

    Article  CAS  Google Scholar 

  64. Chipman DM (1986) J Chem Phys 84:1677. doi:10.1063/1.450464

    Article  CAS  Google Scholar 

  65. Bitzer RS, Barbosa AGH, da Silva CO, Nascimento MAC (2005) Carbohydr Res 340:2171. doi:10.1016/j.carres.2005.07.001

    Article  CAS  Google Scholar 

  66. Jolly WL, Eyermann CJ (1983) Inorg Chem 22:1566. doi:10.1021/ic00152a031

    Article  CAS  Google Scholar 

  67. Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic Press, New York

    Google Scholar 

  68. Taylor PR (2001) In Roos BO, Widmark PO (eds) European summer school of quantum chemistry. Lund University, Lund

  69. Cook M, Karplus M (1987) J Phys Chem 91:31. doi:10.1021/j100285a010

    Article  CAS  Google Scholar 

  70. Bytautas L, Ivanic J, Ruedenberg K (2003) J Chem Phys 119:8217. doi:10.1063/1.1610434

    Article  CAS  Google Scholar 

  71. Ivanov VV, Adamowicz L, Lyakh DI (2006) Int J Quantum Chem 106:2875. doi:10.1002/qua.21113

    Article  CAS  Google Scholar 

  72. Bytautas L, Nagata T, Gordon MS, Ruedenberg K (2007) J Chem Phys 127:164317. doi:10.1063/1.2800017

    Article  CAS  Google Scholar 

  73. Bytautas L, Matsunaga N, Nagata T, Gordon MS, Ruedenberg K (2007) J Chem Phys 127:204301. doi:10.1063/1.2801989

    Article  CAS  Google Scholar 

  74. Bytautas L, Matsunaga N, Nagata T, Gordon MS, Ruedenberg K (2007) J Chem Phys 127:204313. doi:10.1063/1.2805392

    Article  CAS  Google Scholar 

  75. Ponec R, Yuzhakov G, Cooper DL (2004) Theor Chem Acc 112:419. doi:10.1007/s00214-004-0597-9

    Article  CAS  Google Scholar 

  76. Bader RFW (1991) Chem Rev 91:893. doi:10.1021/cr00005a013

    Article  CAS  Google Scholar 

  77. te Velde G, Bickelhaupt FM, Baerends EJ, van Gisbergen SJA, Fonseca Guerra C, Snijders JG, Ziegler T (2001) J Comput Chem 22:931. doi:10.1002/jcc.1056

    Article  CAS  Google Scholar 

  78. Silvi B, Fourré I, Alikhani ME (2005) Mon Chem 136:855. doi:10.1007/s00706-005-0297-8

    Article  CAS  Google Scholar 

  79. Ruedenberg K (1962) Rev Mod Phys 34:326. doi:10.1103/RevModPhys.34.326

    Article  CAS  Google Scholar 

  80. Wilson CW Jr, Goddard WAIII (1972) Theor Chim Acta 26:195. doi:10.1007/BF00529306

    Article  CAS  Google Scholar 

  81. Goddard WAIII, Wilson CW Jr (1972) Theor Chim Acta 26:211. doi:10.1007/BF00529307

    Article  CAS  Google Scholar 

  82. Kutzelnigg W (1990) In: Maksic ZB (ed) Theoretical models of chemical bonding, vol 2. Springer, Berlin, p 1

  83. Mulliken RS (1955) J Am Chem Soc 77:884. doi:10.1021/ja01609a020

    Article  CAS  Google Scholar 

  84. Pitzer KM (1955) J Chem Phys 23:1735. doi:10.1063/1.1742443

    Article  CAS  Google Scholar 

  85. Caldow GL, Coulson CA (1962) Trans Farad Soc 58:633. doi:10.1039/tf9625800633

    Article  CAS  Google Scholar 

  86. Shriver DP, Atkins PW (1999) Inorganic chemistry, 3rd edn. Oxford University Press, New York

    Google Scholar 

  87. Koch W, Holthausen MC (2001) A chemists’s guide to density functional theory, 2nd edn. Wiley-VCH, Weiheim

    Google Scholar 

  88. Forslund LE, Kaltsoyannis N (2003) N J Chem 27:1108. doi:10.1039/b301947k

    Article  CAS  Google Scholar 

  89. Esterhuysen C, Frenking G (2004) Theor Chem Acc 111:381. doi:10.1007/s00214-003-0535-2

    CAS  Google Scholar 

  90. Krapp A, Bickelhaupt FM, Frenking G (2006) Chem Eur J 12:9196. doi:10.1002/chem.200600564

    Article  CAS  Google Scholar 

  91. Rincón L, Alvarellos JE, Almeida R (2005) J Chem Phys 122:214104. doi:10.1063/1.1901564

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Felipe P. Fleming and Prof. Marco A. C. Nascimento for helpful discussions on the subject of this paper. Financial support from PROPP-UFF, Faperj and CNPq is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André G. H. Barbosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, A.G.H., Barcelos, A.M. The electronic structure of the F2, Cl2, Br2 molecules: the description of charge-shift bonding within the generalized valence bond ansatz. Theor Chem Account 122, 51–66 (2009). https://doi.org/10.1007/s00214-008-0484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0484-x

Keywords

Navigation