Skip to main content
Log in

Avoiding gas-phase calculations in theoretical pK a predictions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

CBS-QB3, two simplified and less computationally demanding versions of CBS-QB3, DFT-B3LYP, and HF quantum chemistry methods have been used in conjunction with the CPCM continuum solvent model to calculate the free energies of proton exchange reactions in water solution following an isodesmic reaction approach. According to our results, the precision of the predicted pK a values when compared to experiment is equivalent to that of the thermodynamic cycles that combine gas-phase and solution-phase calculations. However, in the aqueous isodesmic reaction schema, the accuracy of the results is less sensitive to the presence of explicit water molecules and to the global charges of the involved species since the free energies of solvation are not required. In addition, this procedure makes easier the prediction of pK a values for molecules that undergo large conformational changes in solvation process and makes possible the pK a prediction of unstable species in gas-phase such as some zwitterionic tautomers. The successive pK a values of few amino acids corresponding to the ionization of the α-carboxylic acid and α-amine groups, which is one of the problematic cases for thermodynamic cycles, were successfully calculated by employing the aqueous isodesmic reaction yielding mean absolute deviations of 0.22 and 0.19 pK a units for the first and second ionization processes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Chart 1
Chart 2
Scheme 4

Similar content being viewed by others

References

  1. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  2. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200

    Article  CAS  Google Scholar 

  3. Orozco M, Luque FJ (2000) Chem Rev 100:4187–4225

    Article  CAS  Google Scholar 

  4. Tomasi J (2004) Theor Chem Acc 112:184–203

    Article  CAS  Google Scholar 

  5. Tomasi J (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  6. Cramer CJ, Truhlar DG (2008) Acc Chem Res 41:760–768

    Article  CAS  Google Scholar 

  7. Ho J, Coote ML (2010) Theor Chem Acc 125:3–21

    Article  CAS  Google Scholar 

  8. Liptak MD, Shields GC (2001) J Am Chem Soc 123:7314–7319

    Article  CAS  Google Scholar 

  9. Toth AM, Liptak MD, Phillips DL, Shields GC (2001) J Chem Phys 114:4595–4606

    Article  CAS  Google Scholar 

  10. Liptak MD, Shields GC (2001) Int J Quant Chem 85:727–741

    Article  CAS  Google Scholar 

  11. Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J Am Chem Soc 124:6421–6427

    Article  CAS  Google Scholar 

  12. Król M, Wrona M, Page CS, Bates PA (2006) J Chem Theory Comput 2:1520–1529

    Article  Google Scholar 

  13. Charif IE, Mekelleche SM, Villemin D, Mora-Díez N (2007) J Mol Struct Theochem 818:1–6

    Article  CAS  Google Scholar 

  14. Gao D, Svoronos P, Wong PK, Maddalena D, Hwang J, Walker H (2005) J Phys Chem A 109:10776–10785

    Article  CAS  Google Scholar 

  15. Brown TN, Mora-Díez N (2006) J Phys Chem B 110:9270–9279

    Article  CAS  Google Scholar 

  16. Ho J, Coote ML (2009) J Chem Theory Comput 5:295–306

    Article  CAS  Google Scholar 

  17. Sadlej-Sosnowska N (2007) Theor Chem Acc 118:281–293

    Article  CAS  Google Scholar 

  18. Casasnovas R, Frau J, Ortega-Castro J, Salvà A, Donoso J, Muñoz F (2009) J Mol Struct Theochem 912:5–12

    Article  CAS  Google Scholar 

  19. Pliego JR Jr, Riveros JM (2002) J Phys Chem A 106:7434–7439

    Article  CAS  Google Scholar 

  20. Zhan C, Dixon DA (2001) J Phys Chem A 105:11534–11540

    Article  CAS  Google Scholar 

  21. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV (1998) J Phys Chem A 102:7787–7794

    Article  CAS  Google Scholar 

  22. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081

    Article  CAS  Google Scholar 

  23. Palascak MW, Shields GC (2004) J Phys Chem A 108:3692–3694

    Article  CAS  Google Scholar 

  24. Pliego JR Jr, Riveros JM (2000) J Phys Chem B 104:5155–5160

    Article  CAS  Google Scholar 

  25. Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133–1152

    Article  CAS  Google Scholar 

  26. Takano Y, Houk KN (2005) J Chem Theory Comput 1:70–77

    Article  Google Scholar 

  27. Govender KK, Cukrowski I (2009) J Phys Chem A 113:3639–3647

    Article  CAS  Google Scholar 

  28. Govender KK, Cukrowski I (2010) J Phys Chem A 114:1868–1878

    Article  CAS  Google Scholar 

  29. Ho J, Klamt A, Coote ML (2010) J Phys Chem A 114:13442–13444

    Article  CAS  Google Scholar 

  30. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian, Inc, Wallingford

    Google Scholar 

  32. Ochterski JW, Petersson GA, Montgomery JA Jr (1996) J Chem Phys 104:2598–2619

    Article  CAS  Google Scholar 

  33. Montgomery JA Jr, Frisch JM, Ochterski JW, Petersson GA (1999) J Chem Phys 104:2822–2827

    Article  Google Scholar 

  34. Montgomery JA Jr, Frisch JM, Ochterski JW, Petersson GA (2000) J Chem Phys 104:6532–6542

    Article  Google Scholar 

  35. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  36. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  37. Casasnovas R, Frau J, Ortega-Castro J, Salvà A, Donoso J, Muñoz F (2010) Int J Quant Chem 110:323–330

    Article  CAS  Google Scholar 

  38. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  39. Pokon EK, Liptak MD, Feldgus S, Shields GC (2001) J Phys Chem A 105:10483–10487

    Article  CAS  Google Scholar 

  40. Pickard FC, Griffith DR, Ferrara SJ, Liptak MD, Kirschner KN, Shields GC (2006) Int J Quant Chem 106:3122–3128

    Article  CAS  Google Scholar 

  41. Sanz P, Mó O, Yáñez M, Elguero J (2007) J Phys Chem A 111:3585–3591

    Article  CAS  Google Scholar 

  42. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem A 110:2493–2499

    Article  CAS  Google Scholar 

  43. Lide DR (ed) (2007) CRC handbook of chemistry and physics, 87th edn. CRC Press Inc., Boca Raton

    Google Scholar 

  44. Williams R, pKa compilation. http://research.chem.psu.edu/brpgroup/pKa_compilation.pdf. Accessed 28 July 010

  45. Albert A (1963) Dipolar cycloaddition chemistry. In: Katrizty AR (ed) Physical methods in heterocyclic chemistry, vol 1. Academic Press, NY

    Google Scholar 

  46. Angulo G, Carmona C, Pappalardo RR, Muñoz MA, Guardado P, Sánchez-Marcos E, Balón M (1997) J Org Chem 62:5104–5109

    Article  CAS  Google Scholar 

  47. Chen IJ, MacKerell AD Jr (2000) Theor Chem Acc 103:483–494

    CAS  Google Scholar 

  48. Caballero NA, Melendez FJ, Muñoz-Caro C, Niño A (2006) Biophys Chem 124:155–160

    Article  CAS  Google Scholar 

  49. Amyes TL, Richard JP (1996) J Am Chem Soc 118:3129–3141

    Article  CAS  Google Scholar 

  50. Rios A, Richard JP (1997) J Am Chem Soc 119:8375–8376

    Article  CAS  Google Scholar 

  51. Rios A, Amyes TL, Richard JP (2000) J Am Chem Soc 122:9373–9385

    Article  CAS  Google Scholar 

  52. Rios A, Richard JP, Amyes TL (2002) J Am Chem Soc 124:8251–8259

    Article  CAS  Google Scholar 

  53. Chiang Y, Kresge J, Pruszynski P (1992) J Am Chem Soc 114:3103–3107

    Article  CAS  Google Scholar 

  54. Richard JP, Williams G, O’Donoghue AC, Amyes TL (2002) J Am Chem Soc 124:2957–2968

    Article  CAS  Google Scholar 

  55. Rios A, Crugeiras J, Richard JP (2001) J Am Chem Soc 123:7949–7950

    Article  CAS  Google Scholar 

  56. Sánchez-Marcos E, Terryn B, Rivail JL (1985) J Phys Chem 89:4695–4700

    Article  Google Scholar 

  57. Claverie P, Daudey JP, Langlet J, Pullman B, Plazzola D, Huron MJ (1978) J Phys Chem 82:405–418

    Article  CAS  Google Scholar 

  58. Vyacheslav S, Bryantsev S, Diallo MS, Goddadrd WA III (2008) J Phys Chem B 112:9709–9719

    Article  Google Scholar 

  59. Pliego JR Jr, Riveros JM (2001) J Phys Chem A 105:7241–7247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Government in the framework of Project CTQ2008-02207/BQU. One of us (R. C.) wishes to acknowledge a fellowship from the Spanish MEC within the FPU program. The authors are grateful to “Centro de Cálculo de Superomputación de Galicia” (CESGA) and to “Centre de Supercomputació de Catalunya” (CESCA) for access to their computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Frau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3,116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casasnovas, R., Fernández, D., Ortega-Castro, J. et al. Avoiding gas-phase calculations in theoretical pK a predictions. Theor Chem Acc 130, 1–13 (2011). https://doi.org/10.1007/s00214-011-0945-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0945-5

Keywords

Navigation