Skip to main content
Log in

Theoretical study of proton-catalyzed hydrolytic deamination mechanism of adenine

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Water-assisted proton-catalyzed hydrolytic deamination of adenine to produce hypoxanthine has been studied using density functional theory method. Because adenine could be protonated at N1, N3, N7 and N10, four pathways initiated from the four different protonated adenines have been investigated. The first step of the four pathways is the nucleophilic attack of water with an assistant water to form a tetrahedral structure complex, and this is the rate-determining step. Including solvent effects decreased the relative energies of stationary points but have little effect on the structures. Pathway A is preferred due to the lowest energy barrier, and the relative free energy is 28.9 kcal/mol in vacuo. The outcomes show that adenine deamination under acidic condition is much easier to occur than under neutral condition due to lower energy barriers. The total atomic charge of C5 in the initial intermediate is correlated with the ease of deamination reaction. The more positive C5 atom is, the easier the deamination reaction is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sun X, Lee JK (2007) J Org Chem 72:6548–6555

    Article  CAS  Google Scholar 

  2. Almatarneh MH, Flinn CG, Poirier RA, Sokalski WA (2006) J Phys Chem A 110:8227–8234

    Article  CAS  Google Scholar 

  3. Almatarneh MH, Flinn CG, Poirier RA (2008) J Chem Inf Model 48:831–843

    Article  CAS  Google Scholar 

  4. Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Phys Chem A 112:11487–11494

    Article  CAS  Google Scholar 

  5. Labet V, Grand A, Morell C, Cadet J, Eriksson LA (2008) Theor Chem Acc 120:429–435

    Article  CAS  Google Scholar 

  6. Labet V, Morell C, Cadet J, Eriksson LA, Grand A (2009) J Phys Chem A 113:2524–2533

    Article  CAS  Google Scholar 

  7. Zhang A, Yang B, Li Z (2007) J Mol Struct Theochem 819:95–101

    Article  CAS  Google Scholar 

  8. Zhu C, Meng F (2009) Struct Chem 20:685–691

    Article  CAS  Google Scholar 

  9. Zheng H, Meng F (2009) Struct Chem 20:943–949

    Article  CAS  Google Scholar 

  10. Jordan DO (1960) The chemistry of nucleic acids. Butterworths, Washington, DC, p 65

    Google Scholar 

  11. Shapiro R, Klein RS (1966) Biochemistry 5:2358–2362

    Article  CAS  Google Scholar 

  12. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  14. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  15. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  Google Scholar 

  16. Toro-Labbé A (1999) J Phys Chem A 103:4398–4403

    Article  Google Scholar 

  17. Rincón E, Toro-Labbé A (2007) Chem Phys Lett 438:93–98

    Article  Google Scholar 

  18. Furmanchuk A, Leszczynski J (2008) J Sulfur Chem 29:401–413

    Article  CAS  Google Scholar 

  19. Cappelli C, Corni S, Mennucci B, Tomasi J, Cammi R (2005) Int J Quant Chem 104:716–726

    Article  CAS  Google Scholar 

  20. Adhikary A, Kumar A, Becker D, Sevilla MD (2006) J Phys Chem B 110:24171–24180

    Article  CAS  Google Scholar 

  21. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  22. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  23. Baboul AG, Curtiss LA, Redfern PC (1999) J Chem Phys 110:7650–7657

    Article  CAS  Google Scholar 

  24. Curtiss LA, Raghavachari K (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  25. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  26. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  27. Tang YZ, Sun JY, Sun H, Pan YR, Wang RS (2008) Theor Chem Account 119:297–303

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskortz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  29. Mirkin SM (1995) Annu Rev Biophys Biomol Struct 24:319–350

    Article  Google Scholar 

  30. Wu R, McMahon TB (2007) J Am Chem Soc 129:569–580

    Article  CAS  Google Scholar 

  31. Fuentes-Cabrera M, Sumpter BG, Šponer JE, Šponer J, Petit L, Wells JC (2007) J Phys Chem B 111:870–879

    Article  CAS  Google Scholar 

  32. Liu H, Gauld JW (2008) J Phys Chem B 112:16874–16882

    Article  CAS  Google Scholar 

  33. Close DM, Crespo-Hernández CE, Gorb L, Leszczynski J (2008) J Phys Chem A 112:12702–12706

    Article  CAS  Google Scholar 

  34. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  35. Lindahl T, Nyberg B (1974) Biochemistry 13:3405–3410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Research Reward Fund for Excellent Young and Middle-Aged Scientists of Shandong Province (Grant No. 2008BS02014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fancui Meng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Meng, F. Theoretical study of proton-catalyzed hydrolytic deamination mechanism of adenine. Theor Chem Acc 127, 561–571 (2010). https://doi.org/10.1007/s00214-010-0747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0747-1

Keywords

Navigation