Skip to main content
Log in

Proton catalyzed hydrolytic deamination of cytosine: a computational study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Two pathways involving proton catalyzed hydrolytic deamination of cytosine (to uracil) are investigated at the PCM-corrected B3LYP/6-311G(d,p) level of theory, in the presence of an additional catalyzing water molecule. It is concluded that the pathway involving initial protonation at nitrogen in position 3 of the ring, followed by water addition at C4 and proton transfer to the amino group, is a likely route to hydrolytic deamination. The rate determining step is the addition of water to the cytosine, with a calculated free energy barrier in aqueous solution of ΔG =140 kJ/mol. The current mechanism provides a lower barrier to deamination than previous work based on OH catalyzed reactions, and lies closer to the experimental barrier derived from rate constants (E a = 117  ±  4 kJ/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burgur A (1983). A Guide to the Chemical Basis of Drug Design. Wiley, New York

    Google Scholar 

  2. Peng W and Shaw BR (1996). Biochemistry 35: 10172–10181

    Article  CAS  Google Scholar 

  3. Florián J, Baumruk V and Leszczyñski J (1996). J Phys Chem 100: 5578–5589

    Article  Google Scholar 

  4. Sponer J, Leszczynski J and Hobza P (1996). J Comput Chem 117: 841–850

    Article  Google Scholar 

  5. Estrin DA, Paglieri L and Corongiu G (1994). J Phys Chem 98: 5653–5660

    Article  CAS  Google Scholar 

  6. Scanlan MJ and Hillier IH (1984). J Am Chem Soc 106: 3737–3745

    Article  CAS  Google Scholar 

  7. Chandra AK, Nguyen MT and Zeegers-Huyskens T (2000). J Mol Struct (Theochem) 519: 1–11

    CAS  Google Scholar 

  8. Chandra AK, Michalska D, Wysokinsky R and Zeegers-Huyskens T (2004). J Phys Chem A 108: 9593–9600

    Article  CAS  Google Scholar 

  9. Civcir PÜ (2000). J Mol Struc (Theochem) 532: 157–169

    Article  CAS  Google Scholar 

  10. Gould IR, Green DVS, Young P and Hillier IH (1992). J Org Chem 57: 4434–4437

    Article  CAS  Google Scholar 

  11. Morpurgo S, Bossa M and Morpurgo GO (2000). Adv Quantum Chem 36: 169–183

    Google Scholar 

  12. Sambrano JR, Souza AR, Queralt JJ and Andrés J (2000). Chem Phys Lett 317: 437–443

    Article  CAS  Google Scholar 

  13. Colominas C, Luque FJ and Orozco M (1996). J Am Chem Soc 118: 6811–6821

    Article  CAS  Google Scholar 

  14. Fogarasi G (2002). J Phys Chem A 106: 1381–1390

    Article  CAS  Google Scholar 

  15. Fogarasi G and Szalay PG (2002). Chem Phys Lett 356: 383–390

    Article  CAS  Google Scholar 

  16. Person WB, Szczepaniak K, Szczesniak M, Kwiatkowski JS, Hernandez L and Czerminski R (1989). J Mol Struc (Theochem) 194: 239–258

    CAS  Google Scholar 

  17. Brown RD, Godfrey PD, McNaughton D and Pierlot AP (1989). J Am Chem Soc 111: 2308–2310

    Article  CAS  Google Scholar 

  18. Monajjemi M, Ghiasi R, Ketabi S, Passdar H, Mollaamin F (2004) pp 11–18

  19. Monajjemi M, Ghiasi R and Abedi A (2005). Theor Inorg Chem 50: 435–441

    CAS  Google Scholar 

  20. Burda J, Sponer J, Leszczynski J and Hobza P (1997). J Phys Chem B 101: 9670–9677

    Article  CAS  Google Scholar 

  21. Sponer J, Burda JV, Sabat M, Leszczynski J and Hobza P (1998). J Phys Chem A 102: 5951–5957

    Article  CAS  Google Scholar 

  22. Sponer JE, Miguel PJ, Rodruigez-Santiago L, Erxleben A, Krumm M, Sodupe M, Sponer J and Lippert B (2004). Angew Chem Int Ed 43: 5396–5399

    Article  CAS  Google Scholar 

  23. Russo N, Toscano M and Grand A (2001). J Phys Chem B 105: 4735–4741

    Article  CAS  Google Scholar 

  24. Russo N, Sicilia E, Toscano M and Grand A (2002). Int J Quantum Chem 90: 903–909

    Article  CAS  Google Scholar 

  25. Russo N, Toscano M and Grand A (2001). J Am Chem Soc 123: 10272–10279

    Article  CAS  Google Scholar 

  26. Russo N, Toscano M and Grand A (2003). J Mass Spectrom 38: 265–270

    Article  CAS  Google Scholar 

  27. Russo N, Toscano M and Grand A (2003). J Phys Chem A 107: 11533–11538

    Article  CAS  Google Scholar 

  28. Marino T, Toscano M, Russo N and Grand A (2004). Int J Quantum Chem 98: 347–354

    Article  CAS  Google Scholar 

  29. Marino T, Mazzuca D, Toscano M, Russo N and Grand A (2007). Int J Quantum Chem 107: 311–317

    Article  CAS  Google Scholar 

  30. Brown D and Phillips JH (1965). J Mol Biol 11: 663–671

    Article  CAS  Google Scholar 

  31. Notari RE, Chin ML and Cardoni A (1970). J Pharm Sci 59: 27–32

    Article  CAS  Google Scholar 

  32. Dreyfus M, Bensaude O, Dodin G and Dubois JE (1976). J Am Chem Soc 98: 6338–6349

    Article  CAS  Google Scholar 

  33. Shapiro R and Klein R (1966). Biochemistry 5: 2358–2362

    Article  CAS  Google Scholar 

  34. Chen H and Shaw BR (1994). Biochemistry 33: 4121–4129

    Article  CAS  Google Scholar 

  35. Glaser R, Rayat S, Lewis M, Son M-S and Meyer S (1999). J Am Chem Soc 121: 6108–6119

    Article  CAS  Google Scholar 

  36. Shapiro R and Klein R (1967). Biochemistry 6: 3576–3782

    Article  CAS  Google Scholar 

  37. Frederico LA:, Kunkel TA and Shaw BR (1990). Biochemistry 29: 2532–2537

    Article  CAS  Google Scholar 

  38. Lindahl T and Nyberg B (1974). Biochemistry 13: 3405–3410

    Article  CAS  Google Scholar 

  39. Duncan BK and Miller JH (1980). Nature 287: 560–561

    Article  CAS  Google Scholar 

  40. Almatarneh MH, Flinn CG, Poirier RA and Sokalski WA (2006). J Phys Chem A 110: 8227–8234

    Article  CAS  Google Scholar 

  41. Yao L, Li Y, Wu Y, Liu A and Yan H (2005). Biochemistry 44: 5940–5947

    Article  CAS  Google Scholar 

  42. Becke AD (1993). J Chem Phys 98: 5648–5652

    Article  CAS  Google Scholar 

  43. Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785–789

    Article  CAS  Google Scholar 

  44. McLean AD and Chandler GS (1980). J Chem Phys 72: 5639

    Article  CAS  Google Scholar 

  45. Krishnan R, Binkley JS, Seeger R and Pople JA (1980). J Chem Phys 72: 650

    Article  CAS  Google Scholar 

  46. Frisch MJ, Pople JA and Binkley JS (1984). J Chem Phys 80: 3265

    Article  CAS  Google Scholar 

  47. Cancès MT, Mennucci B and Tomasi J (1997). J Chem Phys 107: 3032–3041

    Article  Google Scholar 

  48. Mennucci B and Tomasi J (1997). J Chem Phys 106: 5151–5158

    Article  CAS  Google Scholar 

  49. Cossi M, Scalmani G, Rega N and Barone V (2002). J Chem Phys 117: 43–54

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskortz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chem W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision C.02, Gaussian: Wallingford, 2004

  51. Llano J and Eriksson LA (2002). J Chem Phys 117: 10193–10206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Eriksson.

Additional information

Dedicated to Professor Nino Russo on the occasion of his 60th birthday.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labet, V., Grand, A., Morell, C. et al. Proton catalyzed hydrolytic deamination of cytosine: a computational study. Theor Chem Account 120, 429–435 (2008). https://doi.org/10.1007/s00214-008-0418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0418-7

Keywords

Navigation