Skip to main content
Log in

Explicitly correlated second-order perturbation theory calculations on molecules containing heavy main-group elements

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Slater-type geminals (STGs) have been used as explicitly correlated two-electron basis functions for calculations on the hydrides of N–As and Sb (as well as on the hydrides of O–Se and F–Br with similar, not reported results) in various one-electron basis sets of Gaussian atomic orbitals. The performance of the explicitly correlated theory has been assessed with respect to the exponent of the STG, for example, by using different exponents for individual pair correlation functions and pair energies. It is shown that a correlation factor with an exponent of \({\gamma = 1.4 a_{0}^{-1}}\) can give reliable results within 1% from the basis-set limit for all investigated molecules in an aug-cc-pVQZ basis set for the valence shells, using fixed amplitudes for the STGs in a diagonal orbital-invariant formulation of the theory. The use of relativistic effective core potentials (RECPs) in explicitly correlated second-order perturbation theory has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hylleraas EA (1929) Z Phys 54: 347

    Article  CAS  Google Scholar 

  2. Rychlewski, J (eds) (2003) Explicitly correlated wave functions in chemistry and physics. Progress in Theoretical Chemistry and Physics, vol. 13. Kluwer, Dordrecht

    Google Scholar 

  3. Scott TC, Lüchow A, Bressanini D, Morgan JD III (2007) Phys Rev A 75: 060101

    Article  Google Scholar 

  4. Persson BJ, Taylor PR (1996) J Chem Phys 105: 5915

    Article  CAS  Google Scholar 

  5. Polly R, Werner H-J, Dahle P, Taylor PR (2006) J Chem Phys 124: 234107

    Article  Google Scholar 

  6. Dahle P, Helgaker T, Jonsson D, Taylor PR (2007) Phys Chem Chem Phys 9: 3112

    Article  CAS  Google Scholar 

  7. Cencek W, Rychlewski J (1993) J Chem Phys 98: 1252

    Article  CAS  Google Scholar 

  8. Cencek W, Rychlewski J (1995) J Chem Phys 102: 2533

    Article  CAS  Google Scholar 

  9. Kutzelnigg W (1985) Theor Chim Acta 68: 445

    Article  CAS  Google Scholar 

  10. Klopper W, Manby FR, Ten-No S, Valeev EF (2006) Int Rev Phys Chem 25: 427

    Article  CAS  Google Scholar 

  11. Werner H-J, Adler TB, Manby FR (2007) J Chem Phys 126: 164102

    Article  Google Scholar 

  12. Klopper W, Samson CCM (2002) J Chem Phys 116: 6397

    Article  CAS  Google Scholar 

  13. Valeev EF (2004) Chem Phys Lett 395: 190

    Article  CAS  Google Scholar 

  14. Ten-no S (2004) Chem Phys Lett 398: 56

    Article  CAS  Google Scholar 

  15. Manby FR, Werner H-J, Adler TB, May AJ (2006) J Chem Phys 124: 094103

    Article  Google Scholar 

  16. Kedžuch S, Milko M, Noga J (2005) Int J Quantum Chem 105: 929

    Article  Google Scholar 

  17. Turbomole, Version 5.10 (January 2008), Turbomole GmbH. http://www.turbomole.com (the MP2-F12 program has not yet been released)

  18. Tew DP, Klopper W, Manby FR (2007) J Chem Phys 127: 174105

    Article  Google Scholar 

  19. Klopper W (1991) Chem Phys Lett 186: 583

    Article  CAS  Google Scholar 

  20. Klopper W, Kutzelnigg W (1987) Chem Phys Lett 134: 17

    Article  CAS  Google Scholar 

  21. Kato T (1957) Commun Pure Appl Math 10: 151

    Article  Google Scholar 

  22. Ten-no S (2004) J Chem Phys 121: 117

    Article  CAS  Google Scholar 

  23. Ahlrichs R (2006) Phys Chem Chem Phys 8: 3072

    Article  CAS  Google Scholar 

  24. Obara S, Saika A (1985) J Chem Phys 84: 3963

    Article  Google Scholar 

  25. Höfener S, Bischoff FA, Glöß A, Klopper W (2008) Phys Chem Chem Phys (accepted for publication)

  26. Ten-no S (2007) J Chem Phys 126: 014108

    Article  Google Scholar 

  27. Manby FR (2003) J Chem Phys 119: 4607

    Article  CAS  Google Scholar 

  28. Glöß A (2007) Ph.D. thesis, Universität Karlsruhe (TH), Karlsruhe

  29. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162: 165

    Article  CAS  Google Scholar 

  30. Hättig C, Weigend F (2000) J Chem Phys 113: 5154

    Article  Google Scholar 

  31. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7: 3297

    Article  CAS  Google Scholar 

  32. Tew DP, Klopper W (2006) J Chem Phys 125: 094302

    Article  Google Scholar 

  33. Dunning TH (1989) J Chem Phys 90: 1007

    Article  CAS  Google Scholar 

  34. Woon DE, Dunning TH (1993) J Chem Phys 98: 1358

    Article  CAS  Google Scholar 

  35. Dunning TH, Peterson KA, Wilson AK (2001) J Chem Phys 114: 9244

    Article  CAS  Google Scholar 

  36. Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) J Chem Phys 110: 7667

    Article  CAS  Google Scholar 

  37. Peterson KA (2003) J Chem Phys 119: 11099

    Article  CAS  Google Scholar 

  38. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113: 2563

    Article  CAS  Google Scholar 

  39. Hellweg A, Hättig C, Höfener S, Klopper W (2007) Theor Chem Acc 117: 587

    Article  CAS  Google Scholar 

  40. Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116: 3175

    Article  CAS  Google Scholar 

  41. Tew DP, Klopper W (2005) J Chem Phys 123: 074101

    Article  Google Scholar 

  42. Valeev EF (2006) J Chem Phys 125: 244106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Klopper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischoff, F.A., Höfener, S., Glöß, A. et al. Explicitly correlated second-order perturbation theory calculations on molecules containing heavy main-group elements. Theor Chem Account 121, 11–19 (2008). https://doi.org/10.1007/s00214-008-0441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0441-8

Keywords

Navigation