Skip to main content
Log in

r 12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The ansatz Ψ= (1+1/2r12)Φ+χ with Φ the bare nuclear (or screened nuclear) wave function and χ expanded in products of one-electron functions is explored for second-order perturbation theory and for variational calculations of the ground state of Helium-like ions.

The energy increments E (2)l corresponding to the partial wave expansion of χ go asymptotically as l−8, while conventional partial wave increments go as l−4. χ is coupled to Φ by a “residual” interaction U12 that has no singularity for r12=0. With the present ansatz it is sufficient to include l-values up to 5 in order to get the second-order energy accurate to one microhartree. For the same accuracy l≤4 is sufficient in a “CI with correlated reference function” while in conventional CI one must go to l∼50. The surprisingly faster convergence of the variational approach as compared to second-order perturbation theory is explained. The slow convergence of the traditional partial wave expansion is entirely due to the attempt to represent the quantity 1=〈Φ¦r12r12 −1¦Φ〉 by its partial wave expansion. The best reference function Φ shows very little shielding and resembles closely the eigenstate of the bare nuclear Hamiltonian. The generalization to arbitrary systems is discussed and it is pointed out that the calculation of “difficult” integrals can be avoided without a significant loss in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and footnotes

  1. For a review of the CI method see Shavitt, I. in Modern Theoretical Chemistry, III, Methods of Electronic Structure Theory (H. F. Schaefer III, Ed.), New York; Plenum, 1977. Many landmark papers on the CI method are reviewed in H. F. Schaefer III, Quantum Chemistry, Clarendon, Oxford 1984

    Google Scholar 

  2. It is not sufficient that the basis is complete with respect to an ordinary Hilbert space norm, but with respect to some Soboliev norm, the so-called convergence in energy space, as discussed by Klahn, B., Bingel, W. A.: Theoret. Chim. Acta (Berl.) 44, 9, 27 (1977)

    Google Scholar 

  3. Kutzelnigg, W.: Theoret. Chim. Acta 1, 327 343 (1963); Ahlrichs, R., Kutzelnigg, W.: J. Chem. Phys. 48, 1819 (1968)

    Google Scholar 

  4. Edmiston, C., Krauss, M.: J. Chem. Phys. 45, 1833 (1966)

    Google Scholar 

  5. For reviews see Meyer, W.: in Modern Theoretical Chemistry III, Methods of Electronic Structure Theory (H. F. Schaefer, III Ed., New York: Plenum 1977 and Kutzelnigg, W. ibidem

    Google Scholar 

  6. Bender, C. F., Davidson, E. R.: J. Chem. Phys. 70, 2675 (1966)

    Google Scholar 

  7. Carrol, D. P., Silverstone, H. J., Metzger, R. M.: J. Chem. Phys. 71, 4142 (1979); see also Bunge, C. F.: Theoret. Chim. Acta (Berl.) 16, 126 (1970); and Weiss, A.: Phys. Rev. 122, 1826 (1961)

    Google Scholar 

  8. Schwanz, C.: Phys. Rev. 126, 1015 (1962); Meth. Comp. Phys. 2, 241 (1963)

    Google Scholar 

  9. Lakin, W.: J. Chem. Phys. 43, 2954 (1965)

    Google Scholar 

  10. Kato, T.: Commun. Pure Appl. Math. 10, 151 (1957); see also Pack, R. T., Byers-Brown, W.: J. Chem. Phys. 45, 556 (1966)

    Google Scholar 

  11. Hylleraas, E. A.: Z. Phys. 54, 347 (1929), Z. Phys. 65, 209 (1930)

    Google Scholar 

  12. Kinoshita, T.: Phys. Rev. 105, 1490 (1957)

    Google Scholar 

  13. Pekeris, C. L.: Phys. Rev. 112, 1649 (1958); 115, 1216 (1959); 126, 1470 (1962); Frankowski, K., Pekeris, C. L.: Phys. Rev. 146, 46 (1966)

    Google Scholar 

  14. Larson, S.: Phys. Rev. 169, 49 (1968); A6, 1786 (1972); see also Perkins, J. F.: Phys. Rev. A5, 514 (1972) A8, 700 (1973)

    Google Scholar 

  15. Sims, J. S., Hagstrom, S.: Phys. Rev. A4, 908 (1971), 11, 418 (1975); Int. J. Quantum Chem. 9, 149 (1975); Sims, J. S., Hagstrom, S., Rumble, J. R.: Int. J. Quantum Chem. 10, 853 (1976)

    Google Scholar 

  16. Clary, D. C., Handy, N. C.: Chem. Phys. Letters 51, 483 (1977); Clary, D. C.: Mol. Phys. 34, 793 (1977)

    Google Scholar 

  17. Muszyńska, J., Papierowska, D., Woźnicki, W.: Chem. Phys. Letters 76, 136 (1980); Preiskorn, A., Woźnicki, W.: Chem. Phys. Lett. 86, 369 (1982); Mol. Phys. 52, 1291 (1984)

    Google Scholar 

  18. Longstaff, J. V., Singer, K.: Theoret. Chim. Acta (Berl.) 2, 265 (1964); Lester, W. A., Krauss, M.: J. Chem. Phys. 41, 1407 (1964); King, H. F.: J. Chem. Phys. 46, 705 (1967); Pan, K. C., King, H. F.: J. Chem. Phys. 53, 4397 (1970); 56, 4667 (1972); Handy, N. C.: Mol. Phys. 26, 169 (1973); Salmon, L., Poshusta, R. D.: J. Chem. Phys. 59, 3497 (1973); Adamowitz, L., Sadlej, A.: J. Chem. Phys. 67, 4298 (1977); 69, 3992 (1978)

    Google Scholar 

  19. Jeziorski, B., Szalewicz, K.: Phys. Rev. A19, 2360 (1979); Szalewicz, K., Jeziorski, B., Monkorst, H. J., Zabolitzky, J. G.: J. Chem. Phys. 78, 1420 (1983); 79, 5543 (1983); 81, 368 (1984); Chem. Phys. Letters 91, 169 (1982)

    Google Scholar 

  20. Green, L. C., Mulder, M. M., Milner, P. C.: Phys. Rev. 91, 35 (1953)

    Google Scholar 

  21. Schmidt, H. M., v. Hirschhausen, H.: Phys. Rev. A28, 3179 (1983); see also Byron, F. W., Joachain, C. J.: Phys. Rev. 157, 1 (1967)

    Google Scholar 

  22. Chandrasekhar, S.: Astrophys. J. 100, 176 (1944)

    Google Scholar 

  23. Grein, F., Tseng, T. J.: Chem. Phys. Lett. 7, 506 (1970); see also Hultgren, G. O., Kern, C. W.: Chem. Phys. Lett. 10, 233 (1971); and Löwdin, P. O., Redei, L.: Phys. Rev. 114, 752 (1959)

    Google Scholar 

  24. Boys, S. F.: Proc. Roy. Soc. A309, 195 (1968); Boys, S. F., Handy, N. C.: Proc. Roy. Soc. A310, 43, 63, A311, 309 (1969)

    Google Scholar 

  25. Scherr, C. W., Knight, R. E.: Revs. Mod. Phys. 35, 436 (1963)

    Google Scholar 

  26. Midtal, J.: Phys. Rev. 138, 1010 (1965)

    Google Scholar 

  27. A recent discussion on various definitions of the partial wave increments can be found in: Jankowski, K., Zaharewitz, D. W., Silverstone, H. J.: J. Chem. Phys. 82, 1969 (1985)

    Google Scholar 

  28. Kutzelnigg, W.: Isr. J. Chem. 19, 193 (1980); Schindler, M., Kutzelnigg, W.: J. Chem. Phys. 76, 1919 (1982)

    Google Scholar 

  29. Wallmeier, H., Kutzelnigg, W.: Chem. Phys. Letters 78, 341 (1981); Wallmeier, H.: Phys. Rev. A29, 2993 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutzelnigg, W. r 12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l . Theoret. Chim. Acta 68, 445–469 (1985). https://doi.org/10.1007/BF00527669

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00527669

Key words

Navigation