Skip to main content
Log in

Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The mechanisms mediating ketamine’s antidepressant effect have only been partly resolved. Recent preclinical reports implicate serotonin (5-hydroxytryptamine; 5-HT) in the antidepressant-like action of ketamine. Vortioxetine is a multimodal-acting antidepressant that is hypothesized to exert its therapeutic activity through 5-HT reuptake inhibition and modulation of several 5-HT receptors.

Objectives

The objective of this study was to evaluate the therapeutic-like profiles of S-ketamine, vortioxetine, and the serotonin reuptake inhibitor fluoxetine in response to manipulation of 5-HT tone.

Method

Flinders Sensitive Line (FSL) rats, a genetic model of depression, were depleted of 5-HT by repeated administration of 4-chloro-DL-phenylalanine methyl ester HCl (pCPA). Using pCPA-pretreated and control FSL rats, we investigated the acute and sustained effects of S-ketamine (15 mg/kg), fluoxetine (10 mg/kg), or vortioxetine (10 mg/kg) on recognition memory and depression-like behavior in the object recognition task (ORT) and forced swim test (FST), respectively.

Results

The behavioral phenotype of FSL rats was unaffected by 5-HT depletion. Vortioxetine, but not fluoxetine or S-ketamine, acutely ameliorated the memory deficits of FSL rats in the ORT irrespective of 5-HT tone. No sustained effects were observed in the ORT. In the FST, all three drugs demonstrated acute antidepressant-like activity but only S-ketamine had sustained effects. Unlike vortioxetine, the antidepressant-like responses of fluoxetine and S-ketamine were abolished by 5-HT depletion.

Conclusions

These observations suggest that the acute and sustained antidepressant-like effects of S-ketamine depend on endogenous stimulation of 5-HT receptors. In contrast, the acute therapeutic-like effects of vortioxetine on memory and depression-like behavior may be mediated by direct activity at 5-HT receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • aan het Rot M, Collins KA, Murrough JW et al (2010) Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry 67:139–145. doi:10.1016/j.biopsych.2009.08.038

    Article  Google Scholar 

  • Abildgaard A, Solskov L, Volke V et al (2011) A high-fat diet exacerbates depressive-like behavior in the Flinders Sensitive Line (FSL) rat, a genetic model of depression. Psychoneuroendocrinology 36:623–633. doi:10.1016/j.psyneuen.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  • Austin MP, Mitchell P, Goodwin GM (2001) Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 178:200–206. doi:10.1192/bjp.178.3.200

    Article  CAS  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354. doi:10.1016/S0006-3223(99)00230-9

    Article  CAS  PubMed  Google Scholar 

  • Booij L, Van der Does JW, Haffmans PMJ et al (2005) The effects of high-dose and low-dose tryptophan depletion on mood and cognitive functions of remitted depressed patients. J Psychopharmacol 19:267–275. doi:10.1177/0269881105051538

    Article  CAS  PubMed  Google Scholar 

  • Browne C, Lucki I (2013) Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 4:161. doi:10.3389/fphar.2013.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Charney DS (1998) Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 59:11–14. doi:10.1186/1471-2202-13-125

    CAS  PubMed  Google Scholar 

  • Cryan JF, Harkin A, Naughton M et al (2000) Characterization of d-fenfluramine-induced hypothermia: evidence for multiple sites of action. Eur J Pharmacol 390:275–285. doi:10.1016/S0014-2999(00)00012-1

    Article  CAS  PubMed  Google Scholar 

  • Dale E, Zhang H, Leiser SC et al (2014) Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus. J Psychopharmacol 28:891–902. doi:10.1177/0269881114543719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale E, Lu D, Liu H, et al (2015) Vortioxetine Disinhibits Pyramidal Cells by Blocking Serotonin Excitation of GABAergic Interneurons in the Hippocampus. 70th Annu Meet Soc Biol Psychiatry. May 14-16. Poster 341

  • Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 121:66–72. doi:10.1007/BF02245592

    Article  CAS  Google Scholar 

  • du Jardin KG, Jensen JB, Sanchez C, Pehrson AL (2014) Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism. Eur Neuropsychopharmacol 24:160–171. doi:10.1016/j.euroneuro.2013.07.001

    Article  PubMed  Google Scholar 

  • Duman RS (2014) Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections. Depress Anxiety 6:1–6

    Google Scholar 

  • Dwyer JM, Duman RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: Role in the actions of rapid-acting antidepressants. Biol Psychiatry 73:1189–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM (1997) Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharmacol 333:99–104. doi:10.1016/S0014-2999(97)01116-3

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto K, Iijima M, Chaki S (2014) Serotonin-1A receptor stimulation mediates effects of a metabotropic glutamate 2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and an N-methyl-D-aspartate receptor antagonist, ketamine, in the novelty-suppressed feeding test. Psychopharmacology (Berl) 231:2291–2298. doi:10.1007/s00213-013-3378-0

    Article  CAS  Google Scholar 

  • Fukumoto K, Iijima M, Chaki S (2015) The Antidepressant Effects of an mGlu2/3 Receptor Antagonist and Ketamine Require AMPA Receptor Stimulation in the mPFC and Subsequent Activation of the 5-HT Neurons in the DRN. Neuropsychopharmacology. 1–11. doi: 10.1038/npp.2015.233

  • Garcia LSB, Comim CM, Valvassori SS et al (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry 32:140–144. doi:10.1016/j.pnpbp.2007.07.027

    Article  CAS  Google Scholar 

  • Gass N, Schwarz AJ, Sartorius A et al (2013) Sub-anesthetic ketamine modulates intrinsic bold connectivity within the hippocampal-prefrontal circuit in the rat. Neuropsychopharmacology 39:1–12. doi:10.1038/npp.2013.290

    Google Scholar 

  • Gigliucci V, O’Dowd G, Casey S et al (2013) Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism. Psychopharmacology (Berl) 228:157–166. doi:10.1007/s00213-013-3024-x

    Article  CAS  Google Scholar 

  • Goldberg ME, Torjman MC, Schwartzman RJ et al (2010) Pharmacodynamic profiles of ketamine (R)- and (S)- with 5-day inpatient infusion for the treatment of complex regional pain syndrome. Pain Physician 13:379–387

    PubMed  PubMed Central  Google Scholar 

  • Guilloux JP, Mendez-David I, Alan P et al (2013) Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Neuropharmacology 73:147–159. doi:10.1016/j.neuropharm.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  • Harkin A, Connor TJ, Walsh M et al (2003) Serotonergic mediation of the antidepressant-like effects of nitric oxide synthase inhibitors. Neuropharmacology 44:616–623. doi:10.1016/S0028-3908(03)00030-3

    Article  CAS  PubMed  Google Scholar 

  • Heninger GR, Delgado PL, Charney DS (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29:2–11. doi:10.1055/s-2007-979535

    Article  CAS  PubMed  Google Scholar 

  • Hustveit O, Maurset A, Oye I (1995) Interaction of the chiral forms of ketamine with opioid, phencyclidine, sigma and muscarinic receptors. Pharmacol Toxicol 77:355–359. doi:10.1111/j.1600-0773.1995.tb01041.x

    Article  CAS  PubMed  Google Scholar 

  • Jans LAW, Korte-Bouws GAH, Korte SM, Blokland A (2010) The effects of acute tryptophan depletion on affective behaviour and cognition in Brown Norway and Sprague Dawley rats. J Psychopharmacol 24:605–614. doi:10.1177/0269881108099424

    Article  CAS  PubMed  Google Scholar 

  • Jensen JB, du Jardin KG, Song D et al (2014) Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: Evidence for direct 5-HT receptor modulation. Eur Neuropsychopharmacol 24:148–159. doi:10.1016/j.euroneuro.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  • Jett JD, Boley AM, Girotti M et al (2015) Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway. Psychopharmacology (Berl) 232:3123–3133. doi:10.1007/s00213-015-3957-3

    Article  CAS  Google Scholar 

  • Kavalali ET, Monteggia LM (2012) Synaptic mechanisms underlying rapid antidepressant action of ketamine. Am J Psychiatry 169:1150–1156

    Article  PubMed  Google Scholar 

  • Kavalali ET, Monteggia LM (2015) How does ketamine elicit a rapid antidepressant response? Curr Opin Pharmacol 20:35–39. doi:10.1016/j.coph.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214. doi:10.1001/archpsyc.1994.03950030035004

    Article  CAS  PubMed  Google Scholar 

  • Lapiz-Bluhm MDS, Soto-Piña AE, Hensler JG, Morilak DA (2009) Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology (Berl) 202:329–341. doi:10.1007/s00213-008-1224-6

    Article  CAS  Google Scholar 

  • Leiser SC, Pehrson AL, Robichaud PJ, Sanchez C (2014) Multimodal antidepressant vortioxetine increases frontal cortical oscillations unlike escitalopram and duloxetine—a quantitative EEG study in rats. Br J Pharmacol 171:4255–4272. doi:10.1111/bph.12782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Raaby KF, Sánchez C, Gulinello M (2013) Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats. Behav Brain Res 256:520–528. doi:10.1016/j.bbr.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Abdourahman A, Tamm JA et al (2015) Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol Biochem Behav 135:70–82. doi:10.1016/j.pbb.2015.05.013

    Article  CAS  PubMed  Google Scholar 

  • Lieben CKJ, Steinbusch HWM, Blokland A (2006) 5,7-DHT lesion of the dorsal raphe nuclei impairs object recognition but not affective behavior and corticosterone response to stressor in the rat. Behav Brain Res 168:197–207. doi:10.1016/j.bbr.2005.11.003

    Article  PubMed  Google Scholar 

  • Liebenberg N, Joca S, Wegener G (2015) Nitric oxide involvement in the antidepressant-like effect of ketamine in the Flinders sensitive line rat model of depression. Acta Neuropsychiatr 27:90–96. doi:10.1017/neu.2014.39

    Article  PubMed  Google Scholar 

  • Liu RJ, Fuchikami M, Dwyer JM et al (2013) GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology 38:2268–2277. doi:10.1038/npp.2013.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luckenbaugh DA, Niciu MJ, Ionescu DF et al (2014) Do the dissociative side effects of ketamine mediate its antidepressant effects? J Affect Disord 159:56–61. doi:10.1016/j.jad.2014.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JH, Wilson AA, Ginovart N et al (2001) Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: A [11C]DASB PET imaging study. Am J Psychiatry 158:1843–1849. doi:10.1176/appi.ajp.158.11.1843

    Article  CAS  PubMed  Google Scholar 

  • Meyer JH, Meyer JH, Wilson AA et al (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161:826–835

  • Moaddel R, Abdrakhmanova G, Kozak J et al (2013) Sub-anesthetic concentrations of (R, S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharmacol 698:228–234. doi:10.1016/j.ejphar.2012.11.023

    Article  CAS  PubMed  Google Scholar 

  • Mørk A, Pehrson A, Brennum LT et al (2012) Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 340:666–675. doi:10.1124/jpet.111.189068

    Article  PubMed  Google Scholar 

  • Mørk A, Montezinho LP, Miller S et al (2013) Vortioxetine (Lu AA21004), a novel multimodal antidepressant, enhances memory in rats. Pharmacol Biochem Behav 105:41–50. doi:10.1016/j.pbb.2013.01.019

    Article  PubMed  Google Scholar 

  • Nackenoff AG, Simmler LD, Baganz NL et al (2015) Serotonin transporter-independent actions of the antidepressant vortioxetine as revealed in studies of the SERT Met172 mouse. Eur Neuropsychopharmacol 25:S264–S265. doi:10.1016/S0924-977X(15)30305-9

    Article  Google Scholar 

  • Niciu MJ, Henter ID, Luckenbaugh DA et al (2014) Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: ketamine and other compounds. Annu Rev Pharmacol Toxicol 54:119–139. doi:10.1146/annurev-pharmtox-011613-135950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikiforuk A, Gołembiowska K, Popik P (2010) Mazindol attenuates ketamine-induced cognitive deficit in the attentional set shifting task in rats. Eur Neuropsychopharmacol 20:37–48. doi:10.1016/j.euroneuro.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Nikiforuk A, Fijał K, Potasiewicz A et al (2013a) The 5-hydroxytryptamine (serotonin) receptor 6 agonist EMD 386088 ameliorates ketamine-induced deficits in attentional set shifting and novel object recognition, but not in the prepulse inhibition in rats. J Psychopharmacol 27:469–476. doi:10.1177/0269881113480991

    Article  CAS  PubMed  Google Scholar 

  • Nikiforuk A, Kos T, Fijał K et al (2013b) Effects of the selective 5-ht7 receptor antagonist sb-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats. PLoS One 8:e66695. doi:10.1371/journal.pone.0066695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overstreet DH, Wegener G (2013) The flinders sensitive line rat model of depression—25 years and still producing. Pharmacol Rev 65:143–155. doi:10.1124/pr.111.005397

    Article  CAS  PubMed  Google Scholar 

  • Page ME, Detke MJ, Dalvi A et al (1999) Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology (Berl) 147:162–167

    Article  CAS  Google Scholar 

  • Pehrson AL, Cremers T, Bétry C et al (2013) Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters—a rat microdialysis and electrophysiology study. Eur Neuropsychopharmacol 23:133–145. doi:10.1016/j.euroneuro.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  • Pehrson AL, Leiser SC, Gulinello M et al (2014) Treatment of cognitive dysfunction in major depressive disorder - a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxet. Eur J Pharmacol 753:1–12. doi:10.1016/j.ejphar.2014.07.044

    Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391. doi:10.1016/0014-2999(78)90118-8

    Article  CAS  PubMed  Google Scholar 

  • Prinssen EPM, Assié MB, Koek W, Kleven MS (2002) Depletion of 5-HT disrupts prepulse inhibition in rats: dependence on the magnitude of depletion, and reversal by a 5-HT precursor. Neuropsychopharmacology 26:340–347. doi:10.1016/S0893-133X(01)00348-7

    Article  CAS  PubMed  Google Scholar 

  • Réus GZ, Stringari RB, Ribeiro KF et al (2011) Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Behav Brain Res 221:166–171. doi:10.1016/j.bbr.2011.02.024

    Article  PubMed  Google Scholar 

  • Riga MS, Celada P, Sanchez C, Artigas F (2013) Role of 5-HT3 receptors in the mechanism of action of the investigational antidepressant vortioxetine. Eur Neuropsychopharmacol 23:S393–S394. doi:10.1016/S0924-977X(13)70621-7

    Article  Google Scholar 

  • Riga MS, Celada P, Sanchez C, Artigas F (2015) P.2.e.004 Sub-chronic vortioxetine treatment—but not escitalopram—enhances pyramidal neuron activity in the rat prefrontal cortex. Eur Neuropsychopharmacol 25:S433. doi:10.1016/S0924-977X(15)30579-4

    Article  Google Scholar 

  • Rutten K, Lieben C, Smits L, Blokland A (2007) The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacology (Berl) 192:275–282. doi:10.1007/s00213-006-0697-4

    Article  CAS  Google Scholar 

  • Sałat K, Siwek A, Starowicz G et al (2015) Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor. Neuropharmacology 99:301–307. doi:10.1016/j.neuropharm.2015.07.037

    Article  PubMed  Google Scholar 

  • Sanchez C, Asin KE, Artigas F (2015) Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther 145:43–57. doi:10.1016/j.pharmthera.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  • Savegnago L, Jesse CR, Pinto LG et al (2007) Monoaminergic agents modulate antidepressant-like effect caused by diphenyl diselenide in rats. Prog Neuropsychopharmacol Biol Psychiatry 31:1261–1269. doi:10.1016/j.pnpbp.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  • Sos P, Klirova M, Novak T et al (2013) Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Act Nerv Super Rediviva 55:57–63

    Google Scholar 

  • Szewczyk B, Poleszak E, Wlaź P et al (2009) The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 33:323–329. doi:10.1016/j.pnpbp.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  • Tipton KF, Boyce S, O’Sullivan J et al (2004) Monoamine oxidases: certainties and uncertainties. Curr Med Chem 11:1965–1982. doi:10.2174/0929867043364810

    Article  CAS  PubMed  Google Scholar 

  • Wallace A, Pehrson AL, Sánchez C, Morilak DA (2014) Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats. Int J Neuropsychopharmacol 17:1695–1706. doi:10.1017/S1461145714000571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka H, Yokoyama C, Mizuma H et al (2014) A possible mechanism of the nucleus accumbens and ventral pallidum 5-HT1B receptors underlying the antidepressant action of ketamine: a PET study with macaques. Transl Psychiatry 4:e342. doi:10.1038/tp.2013.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Shirayama Y, Zhang J et al (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632. doi:10.1038/tp.2015.136

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA, Brutsche N, Laje G et al (2012) Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry 72:331–338. doi:10.1016/j.biopsych.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J-C, Li S-X, Hashimoto K (2013) R (-)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav 116:137–141. doi:10.1016/j.pbb.2013.11.033

    Article  PubMed  Google Scholar 

  • Zhao X, Venkata SLV, Moaddel R et al (2012) Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression. Br J Clin Pharmacol 74:304–314. doi:10.1111/j.1365-2125.2012.04198.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zugno AI, Julião RF, Budni J et al (2013) Rivastigmine reverses cognitive deficit and acetylcholinesterase activity induced by ketamine in an animal model of schizophrenia. Metab Brain Dis 28:501–508. doi:10.1007/s11011-013-9417-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by H. Lundbeck A/S and the AU-IDEAS initiative (eMOOD). The funders had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

We gratefully acknowledge Pia Høgh Plougmann for the skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Gaarn du Jardin.

Ethics declarations

Conflict of interest

Kristian Gaarn du Jardin has received travel grants from H. Lundbeck A/S. Connie Sanchez is a fulltime employee of Lundbeck US LLC. Gregers Wegener declares having received lecture fees from H. Lundbeck A/S, Servier SA, Astra Zeneca AB, Eli Lilly A/S, Sun Pharma Pty Ltd, and Pfizer Inc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

du Jardin, K.G., Liebenberg, N., Müller, H.K. et al. Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression. Psychopharmacology 233, 2813–2825 (2016). https://doi.org/10.1007/s00213-016-4327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4327-5

Keywords

Navigation