Skip to main content
Log in

Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Behavioural antidepressant-like effects of ketamine have been reported in the forced swimming test (FST). The mechanisms mediating such effects are unknown.

Objectives

As serotonin (5-HT) is an important transmitter mediating antidepressant responsiveness in the FST, the influence of 5-HT depletion on the antidepressant-like effect of ketamine was assessed.

Methods

The effect of ketamine (25 mg/kg, i.p., 1 or 24 h prior to test) was assessed in the FST in naive rats or animals subjected to 5-HT depletion, repeated stress or following a combination of 5-HT depletion and stress. Endogenous 5-HT was depleted using the tryptophan hydroxylase inhibitor para-chlorophenylalanine (3 × 150 mg/kg, i.p.). Stress was induced by physical restraint (2 h/day for 10 days).

Results

In naive rats, ketamine administered 24 or 1 h prior to test produced a characteristic antidepressant-like reduction in immobility time in the FST. Depletion of 5-HT blocked this reduction in immobility when ketamine was administered 24 h prior FST, indicative of 5-HT dependency. The increase in immobility provoked by repeated restraint stress (2 h/day for 10 days) was blocked by ketamine when administered 24 h prior to FST, but this effect dissipated when animals were subjected to 5-HT depletion.

Conclusions

These observations are consistent with a role for 5-HT in mediating sustained antidepressant activity of ketamine in the FST. Molecular and cellular changes induced by ketamine may produce a rapid adaptation of 5-HT transmission which underlies the antidepressant response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amargós-Bosch M, López-Gil X, Artigas F, Adell A (2006) Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Int J Neuropsychopharmacol 9(5):565–573

    Article  PubMed  Google Scholar 

  • Armario A, Gil M, Marti J, Pol O, Balasch J (1991) Influence of various acute stressors on the activity of adult male rats in a holeboard and in the forced swim test. Pharmacol Biochem Behav 39(2):373–377

    Article  PubMed  CAS  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  PubMed  CAS  Google Scholar 

  • Bechtholt-Gompf AJ, Smith KL, John CS, Kang HH, Carlezon WA Jr, Cohen BM, Ongür D (2011a) CD-1 and Balb/cJ mice do not show enduring antidepressant-like effects of ketamine in tests of acute antidepressant efficacy. Psychopharmacology (Berl) 215(4):689–695

    Article  CAS  Google Scholar 

  • Bechtholt-Gompf AJ, Smith KL, John CS, Kang HH, Carlezon WA Jr, Cohen BM, Ongür D (2011b) Re: concerns about the antidepressant-like effects of high dose ketamine in mice. Psychopharmacology (Berl) 215(4):815–816

    Article  CAS  Google Scholar 

  • Berman R, Cappiello A, Anand A, Oren D, Heninger G, Charney D, Krystal J (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  PubMed  CAS  Google Scholar 

  • Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 16:634–646

    Article  PubMed  CAS  Google Scholar 

  • Bonanno G, Giambelli R, Raiteri L, Tiraboschi E, Zappettini S, Musazzi L, Raiteri M, Racagni G, Popoli M (2005) Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J Neurosci 25:3270–3279

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 94(2):147–160

    Article  CAS  Google Scholar 

  • Borsini F (1995) Role of the serotonergic system in the forced swimming test. Neurosci Biobehav Rev 19(3):377–395

    Article  PubMed  CAS  Google Scholar 

  • Carver CS, Johnson SL, Joormann J (2008) Serotonergic function, two-mode models of self-regulation, and vulnerability to depression: what depression has in common with impulsive aggression. Psychol Bull 134:912–943

    Article  PubMed  Google Scholar 

  • Cornwell BR, Salvadore G, Furey M, Marquardt CA, Brutsche NE, Grillon C, Zarate CA (2012) Synaptic potentiation is critical for rapid antidepressant response to ketamine in treatment-resistant major depression. Biol Psychiatry 72:555–561

    Google Scholar 

  • Cryan JF, Page ME, Lucki I (2002) Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test. Eur J Pharmacol 436:197–205

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9(4):326–357

    Article  PubMed  CAS  Google Scholar 

  • Cryan J, Valentino R, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29:547–569

    Article  PubMed  CAS  Google Scholar 

  • Daniele A, Divella R, Paradiso A, Mattioli V, Romito F, Giotta F, Casamassima P, Quaranta M (2011) Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: causes and treatment with antidepressant. In Vivo 25:895–901

    PubMed  CAS  Google Scholar 

  • Delgado PL (2004) How antidepressants help depression: mechanisms of action and clinical response. J Clin Psychiatry 65(Suppl 4):25–30

    PubMed  CAS  Google Scholar 

  • Duman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35(1):47–56

    Article  PubMed  CAS  Google Scholar 

  • Durkin S, Prendergast A, Harkin A (2008) Reduced efficacy of fluoxetine following MDMA (“ecstasy”)-induced serotonin loss in rats. Prog Neuropsychopharmacol Biol Psychiatry 32(8):1894–1901

    Article  PubMed  CAS  Google Scholar 

  • Engin E, Treit D, Dickson CT (2009) Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience 161(2):359–369

    Article  PubMed  CAS  Google Scholar 

  • Garcia LS, Comim CM, Valvassori SS, Réus GZ, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008a) Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels. Basic Clin Pharmacol Toxicol 103:502–506

    Article  PubMed  CAS  Google Scholar 

  • Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008b) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 32:140–144

    Article  PubMed  CAS  Google Scholar 

  • Garcia LS, Comim CM, Valvassori SS, Réus GZ, Stertz L, Kapczinski F, Gavioli EC, Quevedo J (2009) Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 33(3):450–455

    Article  PubMed  CAS  Google Scholar 

  • Gigliucci V, Buckley K, Nunan J, O’Shea K, Harkin A (2010) A role for serotonin in the antidepressant activity of N(G)-nitro-l-arginine, in the rat forced swimming test. Pharmacol Biochem Behav 94:524–533

    Article  PubMed  CAS  Google Scholar 

  • Harkin A, Connor T, Walsh M, St John N, Kelly J (2003) Serotonergic mediation of the antidepressant-like effects of nitric oxide synthase inhibitors. Neuropharmacology 44:616–623

    Article  PubMed  CAS  Google Scholar 

  • Harkin A, Connor T, Burns M, Kelly J (2004) Nitric oxide synthase inhibitors augment the effects of serotonin re-uptake inhibitors in the forced swimming test. Eur Neuropsychopharmacol 14:274–281

    Article  PubMed  CAS  Google Scholar 

  • Jacobson LH, Cryan JF (2007) Feeling strained? Influence of genetic background on depression-related behavior in mice: a review. Behav Genet 37(1):171–213

    Article  PubMed  CAS  Google Scholar 

  • Jevtovic-Todorovic V, Wozniak DF, Benshoff ND, Olney JW (2001) A comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Res 895:264–267

    Article  PubMed  CAS  Google Scholar 

  • Kari HP, Davidson PP, Kohl HH, Kochhar MM (1978) Effects of ketamine on brain monoamine levels in rats. Res Commun Chem Pathol Pharmacol 20(3):475–488

    PubMed  CAS  Google Scholar 

  • Kim KS, Kwon HJ, Baek IS, Han PL (2012) Repeated short-term (2 h × 14 d) emotional stress induces lasting depression-like behavior in mice. Exp Neurobiol 21:16–22

    Article  PubMed  Google Scholar 

  • Kim Y, Paik J, Lee S, Yoon D, Han C, Lee B (2006) Increased plasma nitric oxide level associated with suicide attempt in depressive patients. Prog Neuropsychopharmacol Biol Psychiatry 30:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Iijima M, Chaki S (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res 224:107–111

    Article  PubMed  CAS  Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  PubMed  CAS  Google Scholar 

  • Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011) Glutamate N-methyl-d-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69(8):754–761

    Article  PubMed  CAS  Google Scholar 

  • Lindefors N, Barati S, O’Connor WT (1997) Differential effects of single and repeated ketamine administration on dopamine, serotonin and GABA transmission in rat medial prefrontal cortex. Brain Res 759:205–212

    Article  PubMed  CAS  Google Scholar 

  • Maeng S, Zarate CA, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  PubMed  CAS  Google Scholar 

  • Martin LL, Bouchal RL, Smith DJ (1982) Ketamine inhibits serotonin uptake in vivo. Neuropharmacology 21(2):113–118

    Article  PubMed  CAS  Google Scholar 

  • Martin LL, Smith DJ (1982) Ketamine inhibits serotonin synthesis and metabolism in vivo. Neuropharmacology 21(2):119–125

    Article  PubMed  CAS  Google Scholar 

  • Murrough JW (2012) Ketamine as a novel antidepressant: from synapse to behavior. Clin Pharmacol Ther 91(2):303–309

    Article  PubMed  CAS  Google Scholar 

  • Nutt DJ (2002) The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 17(Suppl 1):S1–S12

    Article  PubMed  Google Scholar 

  • Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I (1999) Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology 147:162–167

    Article  PubMed  CAS  Google Scholar 

  • Popik P, Kos T, Sowa-Kućma M, Nowak G (2008) Lack of persistent effects of ketamine in rodent models of depression. Psychopharmacology (Berl) 198(3):421–430

    Article  CAS  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  PubMed  CAS  Google Scholar 

  • Pouget P, Wattiez N, Rivaud-Péchoux S, Gaymard B (2010) Rapid development of tolerance to sub-anaesthetic dose of ketamine: an oculomotor study in macaque monkeys. Psychopharmacology (Berl) 209:313–318

    Article  CAS  Google Scholar 

  • Rashidy-Pour A, Motaghed-Larijani Z, Bures J (1995) Tolerance to ketamine-induced blockade of cortical spreading depression transfers to MK-801 but not to AP5 in rats. Brain Res 693:64–69

    Article  PubMed  CAS  Google Scholar 

  • Solomon MB, Furay AR, Jones K, Packard AE, Packard BA, Wulsin AC, Herman JP (2012) Deletion of forebrain glucocorticoid receptors impairs neuroendocrine stress responses and induces depression-like behavior in males but not females. Neuroscience 203:135–143

    Article  PubMed  CAS  Google Scholar 

  • Tizabi Y, Bhatti BH, Manaye KF, Das JR, Akinfiresoye L (2012) Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar–Kyoto rats. Neuroscience 213:72–80

    Google Scholar 

  • Tso MM, Blatchford KL, Callado LF, McLaughlin DP, Stamford JA (2004) Stereoselective effects of ketamine on dopamine, serotonin and noradrenaline release and uptake in rat brain slices. Neurochem Int 44:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ulak G, Mutlu O, Akar F, Komsuoğlu F, Tanyeri P, Erden B (2008) Neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole augment the effects of antidepressants acting via serotonergic system in the forced swimming test in rats. Pharmacol Biochem Behav 90:563–568

    Article  PubMed  CAS  Google Scholar 

  • Veena J, Srikumar BN, Raju TR, Shankaranarayana Rao BS (2009) Exposure to enriched environment restores the survival and differentiation of new born cells in the hippocampus and ameliorates depressive symptoms in chronically stressed rats. Neurosci Lett 455:178–182

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Goffer Y, Xu D, Tukey DS, Shamir DB, Eberle SE, Zou AH, Blanck TJ, Ziff EB (2011) A single subanesthetic dose of ketamine relieves depression-like behaviors induced by neuropathic pain in rats. Anesthesiology 115(4):812–821

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Zhou Z, Yang C (2011) Concerns about the antidepressant-like effects of high-dose ketamine in mice. Psychopharmacology (Berl) 215(4):813

    Article  CAS  Google Scholar 

  • Zarate CJ, Du J, Quiroz J, Gray N, Denicoff K, Singh J, Charney D, Manji H (2003) Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci 1003:273–291

    Article  PubMed  CAS  Google Scholar 

  • Zarate CJ, Singh J, Quiroz J, De Jesus G, Denicoff K, Luckenbaugh D, Manji H, Charney D (2006) A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry 163:153–155

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Health Research Board of Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Harkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gigliucci, V., O’Dowd, G., Casey, S. et al. Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism. Psychopharmacology 228, 157–166 (2013). https://doi.org/10.1007/s00213-013-3024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3024-x

Keywords

Navigation