Skip to main content
Log in

MDMA administration during adolescence exacerbates MPTP-induced cognitive impairment and neuroinflammation in the hippocampus and prefrontal cortex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 28 October 2014

Abstract

Rationale

We have recently shown that chronic exposure to 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) of adolescent mice exacerbates dopamine neurotoxicity and neuroinflammatory effects elicited by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the substantia nigra and striatum at adulthood.

Objectives

The present study investigated whether the amplification of MPTP effects by previous treatment with MDMA extends to the limbic and cortical regions and consequently affects cognitive performance.

Methods

Mice received MDMA (10 mg/kg, twice a day/twice a week) for 9 weeks, followed by MPTP (20 mg/kg × 4 administrations), starting 2 weeks after MDMA discontinuation. Complement type 3 receptor (CD11b) and glial fibrillary acidic protein (GFAP) were evaluated by immunohistochemistry in both the hippocampus and the medial prefrontal cortex (mPFC) to measure microglia and astroglia activation. These neurochemical evaluations were paired with an assessment of cognitive performance by means of the novel object recognition (NOR) and spontaneous alternation tasks.

Results

MPTP administration to MDMA-pretreated mice elicited a stronger activation of CD11b and GFAP in both the hippocampus and the mPFC compared with either substance administered alone. Furthermore, NOR performance was lower in MDMA-pretreated mice administered MPTP compared with mice that received either substance alone.

Conclusions

These results demonstrate that MDMA–MPTP negative interactions extend to the limbic and cortical regions and may result in cognitive impairment, providing further evidence that exposure to MDMA may amplify the effects of later neurotoxic insults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22:425–489

    PubMed  CAS  Google Scholar 

  • Albanese A, Altavista MC, Rossi P (1986) Organization of central nervous system dopaminergic pathways. J Neural Transm Suppl 22:3–17

    PubMed  CAS  Google Scholar 

  • Barbosa DJ, Capela JP, Oliveira JM, Silva R, Ferreira LM, Siopa F, Branco PS, Fernandes E, Duarte JA, de Lourdes Bastos M, Carvalho F (2012) Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes. Br J Pharmacol 165:1017–1033

    Article  PubMed  PubMed Central  Google Scholar 

  • Barcia C, Fernández Barreiro A, Poza M, Herrero MT (2003) Parkinson’s disease and inflammatory changes. Neurotox Res 5:411–418

    Article  PubMed  Google Scholar 

  • Barrett SP, Darredeau C, Pihl RO (2006) Patterns of simultaneous polysubstance use in drug using university students. Hum Psychopharmacol 21:255–263

    Article  PubMed  Google Scholar 

  • Becker B, Wagner D, Koester P, Bender K, Kabbasch C, Gouzoulis-Mayfrank E, Daumann J (2013) Memory-related hippocampal functioning in ecstasy and amphetamine users: a prospective fMRI study. Psychopharmacology 225:923–934

    Article  PubMed  CAS  Google Scholar 

  • Bolla KI, McCann UD, Ricaurte GA (1998) Memory impairment in abstinent MDMA (“Ecstasy”) users. Neurology 51:1532–1537

    Article  PubMed  CAS  Google Scholar 

  • Bosch OG, Wagner M, Jessen F, Kühn KU, Joe A, Seifritz E, Maier W, Biersack HJ, Quednow BB (2013) Verbal memory deficits are correlated with prefrontal hypometabolism in (18) FDG PET of recreational MDMA users. PLoS One 8:e61234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brewer JB, Zhao Z, Desmond JE, Glover GH, Gabrieli JD (1998) Making memories: brain activity that predicts how well visual experience will be remembered. Science 281:1185–1187

    Article  PubMed  CAS  Google Scholar 

  • Busceti CL, Biagioni F, Riozzi B, Battaglia G, Storto M, Cinque C, Molinaro G, Gradini R, Caricasole A, Canudas AM, Bruno V, Nicoletti F, Fornai F (2008) Enhanced tau phosphorylation in the hippocampus of mice treated with 3,4-methylenedioxymethamphetamine (“Ecstasy”). J Neurosci 28:3234–3245

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11:183–202

    Article  PubMed  CAS  Google Scholar 

  • Cadoni C, Solinas M, Pisanu A, Zernig G, Acquas E, Di Chiara G (2005) Effect of 3,4-methylendioxymethamphetamine (MDMA, “ecstasy”) on dopamine transmission in the nucleus accumbens shell and core. Brain Res 1055:143–148

    Article  PubMed  CAS  Google Scholar 

  • Cadoni C, Simola N, Espa E, Fenu S, Di Chiara G (2013) Strain dependence of adolescent Cannabis influence on heroin reward and mesolimbic dopamine transmission in adult Lewis and Fischer 344 rats. Addict Biol. doi:10.1111/adb.12085

    PubMed  Google Scholar 

  • Callaghan RC, Cunningham JK, Sajeev G, Kish SJ (2010) Incidence of Parkinson’s disease among hospital patients with methamphetamine-use disorders. Mov Disord 25:2333–2339

    Article  PubMed  Google Scholar 

  • Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271

    Article  PubMed  CAS  Google Scholar 

  • Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54:241–257

    Article  PubMed  CAS  Google Scholar 

  • Christine CW, Garwood ER, Schrock LE, Austin DE, McCulloch CE (2010) Parkinsonism in patients with a history of amphetamine exposure. Mov Disord 25:228–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa G, Frau L, Wardas J, Pinna A, Plumitallo A, Morelli M (2013) MPTP-induced dopamine neuron degeneration and glia activation is potentiated in MDMA-pretreated mice. Mov Disord 28:1957–1965

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  CAS  Google Scholar 

  • Daumann J Jr, Fischermann T, Heekeren K, Thron A, Gouzoulis-Mayfrank E (2004) Neural mechanisms of working memory in ecstasy (MDMA) users who continue or discontinue ecstasy and amphetamine use: evidence from an 18-month longitudinal functional magnetic resonance imaging study. Biol Psychiatry 56:349–355

    Article  PubMed  CAS  Google Scholar 

  • Daumann J, Fischermann T, Heekeren K, Henke K, Thron A, Gouzoulis-Mayfrank E (2005) Memory-related hippocampal dysfunction in poly-drug ecstasy (3,4-methylenedioxymethamphetamine) users. Psychopharmacology 180:607–611

    Article  PubMed  CAS  Google Scholar 

  • Daza-Losada M, Rodríguez-Arias M, Aguilar MA, Miñarro J (2009) Acquisition and reinstatement of MDMA-induced conditioned place preference in mice pre-treated with MDMA or cocaine during adolescence. Addict Biol 14:447–456

    Article  PubMed  CAS  Google Scholar 

  • Del Zompo M, Piccardi MP, Ruiu S, Albanese A, Morelli M (1992) Localization of MPP + binding sites in the brain of various mammalian species. J Neural Transm Park Dis Dement Sec 4:181–190

    Article  Google Scholar 

  • Driscoll I, Hamilton DA, Petropoulos H, Yeo RA, Brooks WM, Baumgartner RN, Sutherland RJ (2003) The aging hippocampus: cognitive, biochemical and structural findings. Cereb Cortex 13:1344–1351

    Article  PubMed  Google Scholar 

  • Eldridge LL, Knowlton BJ, Furmanski CS, Bookheimer SY, Engel SA (2000) Remembering episodes: a selective role for the hippocampus during retrieval. Nat Neurosci 3:1149–1152

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  • Fallon J, Matthews RT, Hyman BT, Beal MF (1997) MPP + produces progressive neuronal degeneration which is mediated by oxidative stress. Exp Neurol 144:193–198

    Article  PubMed  CAS  Google Scholar 

  • Fasano C, Poirier A, DesGroseillers L, Trudeau LE (2008) Chronic activation of the D2 dopamine autoreceptor inhibits synaptogenesis in mesencephalic dopaminergic neurons in vitro. Eur J Neurosci 28:1480–1490

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Serrano MJ, Pérez-García M, Verdejo-García A (2011) What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neurosci Biobehav Rev 35:377–406

    Article  PubMed  Google Scholar 

  • Frau L, Simola N, Plumitallo A, Morelli M (2013) Microglial and astroglial activation by 3,4-methylenedioxymethamphetamine (MDMA) in mice depends on S (+) enantiomer and is associated with an increase in body temperature and motility. J Neurochem 124:69–78

    Article  PubMed  CAS  Google Scholar 

  • Garwood ER, Bekele W, McCulloch CE, Christine CW (2006) Amphetamine exposure is elevated in Parkinson’s disease. Neurotoxicology 27:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Goffin D, Ali AB, Rampersaud N, Harkavyi A, Fuchs C, Whitton PS, Nairn AC, Jovanovic JN (2010) Dopamine-dependent tuning of striatal inhibitory synaptogenesis. J Neurosci 30:2935–2950

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gonçalves J, Baptista S, Martins T, Milhazes N, Borges F, Ribeiro CF, Malva JO, Silva AP (2010) Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur J Neurosci 31:315–326

    Article  PubMed  Google Scholar 

  • Granado N, O’Shea E, Bove J, Vila M, Colado MI, Moratalla R (2008) Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. J Neurochem 107:1102–1112

    PubMed  CAS  Google Scholar 

  • Halpin LE, Collins SA, Yamamoto BK (2013) Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci. doi:10.1016/j.lfs.2013.07.014

  • Herber DL, Maloney JL, Roth LM, Freeman MJ, Morgan D, Gordon MN (2006) Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Glia 53:382–391

    Article  PubMed  Google Scholar 

  • Hernandez-Rabaza V, Navarro-Mora G, Velazquez-Sanchez C, Ferragud A, Marin MP, Garcia-Verdugo JM, Renau-Piqueras J, Canales JJ (2010) Neurotoxicity and persistent cognitive deficits induced by combined MDMA and alcohol exposure in adolescent rats. Addict Biol 15:413–423

    Article  PubMed  CAS  Google Scholar 

  • Herraiz T, Guillén H, Arán VJ, Idle JR, Gonzalez FJ (2006) Comparative aromatic hydroxylation and N-demethylation of MPTP neurotoxin and its analogs, N-methylated beta-carboline and isoquinoline alkaloids, by human cytochrome P450 2D6. Toxicol Appl Pharmacol 216:387–398

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  PubMed  CAS  Google Scholar 

  • Hondebrink L, Meulenbelt J, Meijer M, van den Berg M, Westerink RH (2011) High concentrations of MDMA (‘ecstasy’) and its metabolite MDA inhibit calcium influx and depolarization-evoked vesicular dopamine release in PC12 cells. Neuropharmacology 61:202–208

    Article  PubMed  CAS  Google Scholar 

  • Izco M, Marchant I, Escobedo I, Peraile I, Delgado M, Higuera-Matas A, Olias O, Ambrosio E, O’Shea E, Colado MI (2007) Mice with decreased cerebral dopamine function following a neurotoxic dose of MDMA (3,4-methylenedioxymethamphetamine, “Ecstasy”) exhibit increased ethanol consumption and preference. J Pharmacol Exp Ther 322:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen LK, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Preliminary evidence of hippocampal dysfunction in adolescent MDMA (“ecstasy”) users: possible relationship to neurotoxic effects. Psychopharmacology 173:383–390

    Article  PubMed  CAS  Google Scholar 

  • Jain NK, Patil CS, Kulkarni SK, Singh A (2002) Modulatory role of cyclooxygenase inhibitors in aging- and scopolamine or lipopolysaccharide-induced cognitive dysfunction in mice. Behav Brain Res 133:369–376

    Article  PubMed  CAS  Google Scholar 

  • Khairnar A, Plumitallo A, Frau L, Schintu N, Morelli M (2010) Caffeine enhances astroglia and microglia reactivity induced by 3,4-methylenedioxymethamphetamine (‘ecstasy’) in mouse brain. Neurotox Res 17:435–439

    Article  PubMed  CAS  Google Scholar 

  • Kokovay E, Cunningham LA (2005) Bone marrow-derived microglia contribute to the neuroinflammatory response and express iNOS in the MPTP mouse model of Parkinson’s disease. Neurobiol Dis 19:471–478

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Rodriguez AB, Llorente-Berzal A, Garcia-Segura LM, Viveros MP (2013) Sex dependent long-term effects of adolescent exposure to Thc and/or Mdma on neuroinflammation and serotoninergic and cannabinoid systems in rats. Br J Pharmacol. doi:10.1111/bph.12519

    Google Scholar 

  • Mann A, Tyndale RF (2010) Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells. Eur J Neurosci 31:1185–1193

    Article  PubMed  Google Scholar 

  • Maurice N, Deniau JM, Glowinski J, Thierry AM (1999) Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the cortico-nigral circuits. J Neurosci 19:4674–4681

    PubMed  CAS  Google Scholar 

  • Maurice T, Hiramatsu M, Itoh J, Kameyama T, Hasegawa T, Nabeshima T (1994) Behavioral evidence for a modulating role of sigma ligands in memory processes. I. Attenuation of dizocilpine (MK-801)-induced amnesia. Brain Res 647:44–56

    Article  PubMed  CAS  Google Scholar 

  • McNamara R, Kerans A, O’Neill B, Harkin A (2006) Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA (“Ecstasy”) and MDA (“Love”). Neuropharmacology 50:69–80

    Article  PubMed  CAS  Google Scholar 

  • McNamara R, Maginn M, Harkin A (2007) Caffeine induces a profound and persistent tachycardia in response to MDMA (“Ecstasy”) administration. Eur J Pharmacol 555:194–198

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2002) Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb Cortex 12:926–935

    Article  PubMed  Google Scholar 

  • Moeller FG, Steinberg JL, Dougherty DM, Narayana PA, Kramer LA, Renshaw PF (2004) Functional MRI study of working memory in MDMA users. Psychopharmacology 177:185–194

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi S, Yabuki Y, Fukunaga K (2012) Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice. J Neurochem 120:541–551

    Article  PubMed  CAS  Google Scholar 

  • Nestor LJ, Ghahremani DG, Monterosso J, London ED (2011) Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Res 194:287–295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • North A, Swant J, Salvatore MF, Gamble-George J, Prins P, Butler B, Mittal MK, Heltsley R, Clark JT, Khoshbouei H (2013) Chronic methamphetamine exposure produces a delayed, long-lasting memory deficit. Synapse 67:245–257

    Article  PubMed  CAS  Google Scholar 

  • O’Mathúna B, Farré M, Rostami-Hodjegan A, Yang J, Cuyàs E, Torrens M, Pardo R, Abanades S, Maluf S, Tucker GT, de la Torre R (2008) The consequences of 3,4-methylenedioxymethamphetamine induced CYP2D6 inhibition in humans. J Clin Psychopharmacol 28:523–529

    Article  PubMed  Google Scholar 

  • Orio L, O’Shea E, Sanchez V, Pradillo JM, Escobedo I, Camarero J, Moro MA, Green AR, Colado MI (2004) 3,4-Methylenedioxymethamphetamine increases interleukin-1beta levels and activates microglia in rat brain: studies on the relationship with acute hyperthermia and 5-HT depletion. J Neurochem 89:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • Pang Y, Fan LW, Zheng B, Cai Z, Rhodes PG (2006) Role of interleukin-6 in lipopolysaccharide-induced brain injury and behavioral dysfunction in neonatal rats. Neuroscience 141:745–755

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC (2002) Recreational Ecstasy/MDMA, the serotonin syndrome, and serotonergic neurotoxicity. Pharmacol Biochem Behav 71:837–844

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC (2012) MDMA and 5-HT neurotoxicity: the empirical evidence for its adverse effects in humans—no need for translation. Br J Pharmacol 166:1518–1522

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Parrott AC, Buchanan T, Heffernan TM, Scholey A, Ling J, Rodgers J (2003) Parkinson’s disorder, psychomotor problems and dopaminergic neurotoxicity in recreational ecstasy/MDMA users. Psychopharmacology 167:449–450

    PubMed  CAS  Google Scholar 

  • Parrott AC, Lasky J (1998) Ecstasy (MDMA) effects upon mood and cognition: before, during and after a Saturday night dance. Psychopharmacology 139:261–268

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC, Rodgers J, Buchanan T, Scholey AB, Heffernan T, Ling J (2004) The reality of psychomotor problems, and the possibility of Parkinson’s disorder, in some recreational ecstasy/MDMA users: a rejoinder to Sumnall et al. (2003). Psychopharmacology 171:231–233

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  • Perfeito R, Cunha-Oliveira T, Rego AC (2012) Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 53:1791–1806

    Article  PubMed  CAS  Google Scholar 

  • Piper BJ, Meyer JS (2004) Memory deficit and reduced anxiety in young adult rats given repeated intermittent MDMA treatment during the periadolescent period. Pharmacol Biochem Behav 79:723–731

    Article  PubMed  CAS  Google Scholar 

  • Puerta E, Hervias I, Goñi-Allo B, Zhang SF, Jordán J, Starkov AA, Aguirre N (2010) Methylenedioxymethamphetamine inhibits mitochondrial complex I activity in mice: a possible mechanism underlying neurotoxicity. Br J Pharmacol 160:233–245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pycock CJ, Kerwin RW, Carter CJ (1980) Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286:74–76

    Article  PubMed  CAS  Google Scholar 

  • Ragozzino ME, Detrick S, Kesner RP (1999) Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci 19:4585–4594

    PubMed  CAS  Google Scholar 

  • Ros-Simó C, Ruiz-Medina J, Valverde O (2012) Behavioural and neuroinflammatory effects of the combination of binge ethanol and MDMA in mice. Psychopharmacology 221:511–525

    Article  PubMed  Google Scholar 

  • Ros-Simó C, Moscoso-Castro M, Ruiz-Medina J, Ros J, Valverde O (2013) Memory impairment and hippocampus specific protein oxidation induced by ethanol intake and 3, 4-methylenedioxymethamphetamine (MDMA) in mice. J Neurochem 125:736–746

    Article  PubMed  Google Scholar 

  • Sawyer J, Eaves EL, Heyser CJ, Maswood S (2012) Tropisetron, a 5-HT (3) receptor antagonist, enhances object exploration in intact female rats. Behav Pharmacol 23:806–809

    Article  PubMed  CAS  Google Scholar 

  • Simola N, Bustamante D, Pinna A, Pontis S, Morales P, Morelli M, Herrera-Marschitz M (2008) Acute perinatal asphyxia impairs non-spatial memory and alters motor coordination in adult male rats. Exp Brain Res 185:595–601

    Article  PubMed  Google Scholar 

  • Singer LT, Linares TJ, Ntiri S, Henry R, Minnes S (2004) Psychosocial profiles of older adolescent MDMA users. Drug Alcohol Depend 74:245–252

    Article  PubMed  Google Scholar 

  • Sisk CL, Zehr JL (2005) Pubertal hormones organize the adolescent brain and behavior. Front Neuroendocrinol 26:163–174

    Article  PubMed  CAS  Google Scholar 

  • Smirnov A, Najman JM, Hayatbakhsh R, Plotnikova M, Wells H, Legosz M, Kemp R (2013) Young adults’ trajectories of Ecstasy use: a population based study. Addict Behav 38:2667–2674

    Article  PubMed  Google Scholar 

  • Sonsalla PK, Nicklas WJ, Heikkila RE (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 243:398–400

    Article  PubMed  CAS  Google Scholar 

  • Sparkman NL, Buchanan JB, Heyen JR, Chen J, Beverly JL, Johnson RW (2006) Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers. J Neurosci 26:10709–10716

    Article  PubMed  CAS  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  PubMed  CAS  Google Scholar 

  • Straiko MM, Coolen LM, Zemlan FP, Gudelsky GA (2007) The effect of amphetamine analogs on cleaved microtubule-associated protein-tau formation in the rat brain. Neuroscience 144:223–231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sy HN, Wu SL, Wang WF, Chen CH, Huang YT, Liou YM, Chiou CS, Pawlak CR, Ho J (2010) MPTP-induced dopaminergic degeneration and deficits in object recognition in rats are accompanied by neuroinflammation in the hippocampus. Pharmacol Biochem Behav 95:158–165

    Article  PubMed  CAS  Google Scholar 

  • Tanila H, Björklund M, Riekkinen P Jr (1998) Cognitive changes in mice following moderate MPTP exposure. Brain Res Bull 45:577–582

    Article  PubMed  CAS  Google Scholar 

  • Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB (1985) Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 14:1039–1052

    Article  PubMed  CAS  Google Scholar 

  • Wang WF, Wu SL, Liou YM, Wang AL, Pawlak CR, Ho YJ (2009) MPTP lesion causes neuroinflammation and deficits in object recognition in Wistar rats. Behav Neurosci 123:1261–1270

    Article  PubMed  Google Scholar 

  • Weinborn M, Woods SP, Nulsen C, Park K (2011) Prospective memory deficits in Ecstasy users: effects of longer ongoing task delay interval. J Clin Exp Neuropsychol 33:1119–1128

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Noda Y, Hasegawa T, Komori Y, Nikai T, Sugihara H, Nabeshima T (1996) The role of nitric oxide in dizocilpine-induced impairment of spontaneous alternation behavior in mice. J Pharmacol Exp Ther 276:460–466

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by funds from Regione Autonoma della Sardegna (Legge Regionale 7 Agosto 2007, N.7, annualità 2008 and 2010). Dr. Giulia Costa gratefully acknowledges the Sardinian Regional Government for financial support (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007–2013–Axis IV Human Resources, Line of Activity l.3.1 “Finanziamento ai corsi di dottorato finalizzati alla formazione di capitale umano altamente specializzato”). Dr. Nicola Simola gratefully acknowledges the Sardinian Regional Government for financial support (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007–2013 – Axis IV Human Resources, Objective l.3, Line of Activity l.3.1 “Avviso di chiamata per il finanziamento di Assegni di Ricerca”).

The authors are grateful to Prof. Antonio Plumitallo and Mr. Renato Mascia, Department of Life and Environmental Sciences, University of Cagliari, for their help with the MDMA synthesis.

Conflicts of interest

Nothing to report.

Funding agencies

This study was supported by funds from the Regione Autonoma della Sardegna (Legge Regionale 7 Agosto 2007, N.7, annualità 2008 and 2010). Dr. Giulia Costa and Dr. Nicola Simola were supported by funds from Regione Autonoma della Sardegna (P.O.R. FSE 2007–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Morelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, G., Simola, N. & Morelli, M. MDMA administration during adolescence exacerbates MPTP-induced cognitive impairment and neuroinflammation in the hippocampus and prefrontal cortex. Psychopharmacology 231, 4007–4018 (2014). https://doi.org/10.1007/s00213-014-3536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3536-z

Keywords

Navigation