Skip to main content
Log in

Persistent effects of chronic clozapine on the cellular and behavioral responses to LSD in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

In schizophrenia patients, optimal treatment with antipsychotics requires weeks to months of sustained drug therapy. However, single administration of antipsychotic drugs can reverse schizophrenia-like behavioral alterations in rodent models of psychosis. This raises questions about the physiological relevance of such antipsychotic-like activity.

Objective

This study evaluates the effects of chronic treatment with clozapine on the cellular and behavioral responses induced by the hallucinogenic serotonin 5-HT2A receptor agonist lysergic acid diethylamide (LSD) as a mouse model of psychosis.

Method

Mice were treated chronically (21 days) with 25 mg/kg/day clozapine. Experiments were conducted 1, 7, 14, and 21 days after the last clozapine administration. [3H]Ketanserin binding and 5-HT 2A mRNA expression were determined in mouse somatosensory cortex. Head-twitch behavior, expression of c-fos, which is induced by all 5-HT2A agonists, and expression of egr-1 and egr-2, which are LSD-like specific, were assayed.

Results

Head-twitch response was decreased and [3H]ketanserin binding was downregulated in 1, 7, and 14 days after chronic clozapine. 5-HT 2A mRNA was reduced 1 day after chronic clozapine. Induction of c-fos, but not egr-1 and egr-2, was rescued 7 days after chronic clozapine. These effects were not observed after short treatment (2 days) with clozapine or chronic haloperidol (1 mg/kg/day).

Conclusion

Our findings provide a murine model of chronic atypical antipsychotic drug action and suggest downregulation of the 5-HT2A receptor as a potential mechanism involved in these persistent therapeutic-like effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Academies NRCotN (2011) Guide for the care and use of laboratory animals, Eightth edn. The National Academies Press, Washington, DC

    Google Scholar 

  • Agid O, Kapur S, Arenovich T, Zipursky RB (2003) Delayed-onset hypothesis of antipsychotic action: a hypothesis tested and rejected. Arch Gen Psychiatry 60:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D, Cohen BM (1993) Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 9:117–124

    PubMed  CAS  Google Scholar 

  • Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A 104:9870–9875

    Article  PubMed  Google Scholar 

  • Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V, Uranova N, Greenough WT (2004) Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 161:742–744

    Article  PubMed  Google Scholar 

  • Borison RL, Diamond BI, Sinha D, Gupta RP, Ajiboye PA (1988) Clozapine withdrawal rebound psychosis. Psychopharmacol Bull 24:260–263

    PubMed  CAS  Google Scholar 

  • Bradford AM, Savage KM, Jones DN, Kalinichev M (2010) Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics. Psychopharmacology (Berl) 212:155–170

    Article  CAS  Google Scholar 

  • Celada P, Puig MV, Diaz-Mataix L, Artigas F (2008) The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol Psychiatry 64:392–400

    Article  PubMed  CAS  Google Scholar 

  • Cheng YF, Paalzow LK (1992) Linear pharmacokinetics of haloperidol in the rat. Biopharm Drug Dispos 13:69–76

    Article  PubMed  CAS  Google Scholar 

  • Cheng YF, Lundberg T, Bondesson U, Lindstrom L, Gabrielsson J (1988) Clinical pharmacokinetics of clozapine in chronic schizophrenic patients. Eur J Clin Pharmacol 34:445–449

    Article  PubMed  CAS  Google Scholar 

  • Choc MG, Lehr RG, Hsuan F, Honigfeld G, Smith HT, Borison R, Volavka J (1987) Multiple-dose pharmacokinetics of clozapine in patients. Pharm Res 4:402–405

    Article  PubMed  CAS  Google Scholar 

  • Dobbs D (2010) Schizophrenia: The making of a troubled mind. Nature 468:154–156

    Article  PubMed  CAS  Google Scholar 

  • Dong E, Nelson M, Grayson DR, Costa E, Guidotti A (2008) Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc Natl Acad Sci U S A 105:13614–13619

    Article  PubMed  CAS  Google Scholar 

  • Freed WJ (1988) The therapeutic latency of neuroleptic drugs and nonspecific postjunctional supersensitivity. Schizophr Bull 14:269–277

    Article  PubMed  CAS  Google Scholar 

  • Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749

    Article  PubMed  CAS  Google Scholar 

  • Garcia EE, Smith RL, Sanders-Bush E (2007) Role of G(q) protein in behavioral effects of the hallucinogenic drug 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. Neuropharmacology 52:1671–1677

    Article  PubMed  CAS  Google Scholar 

  • Gewirtz JC, Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology 23:569–576

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Vollenweider FX (2008) Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 29:445–453

    Article  PubMed  CAS  Google Scholar 

  • Gilmore JH, Fredrik Jarskog L, Vadlamudi S, Lauder JM (2004) Prenatal infection and risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology 29:1221–1229

    Article  PubMed  CAS  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Sealfon SC (2009a) Agonist-trafficking and hallucinogens. Curr Med Chem 16:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Sealfon SC (2009b) Psychedelics and schizophrenia. Trends Neurosci 32:225–232

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, Weisstaub N, Hen R, Gingrich JA, Sealfon SC (2003) Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci 23:8836–8843

    PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  PubMed  CAS  Google Scholar 

  • Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Daumann J, Obradovic M, Kovar KA (2005a) Inhibition of return in the human 5HT(2A) agonist and NMDA antagonist model of psychosis. Neuropsychopharmacology 31(2):431–441

    Article  Google Scholar 

  • Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Obradovic M, Kovar KA (2005b) Psychological effects of (S)-ketamine and N, N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry 38:301–311

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, Roth BL (2007) Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull 33:1100–1119

    Article  PubMed  Google Scholar 

  • Gray L, van den Buuse M, Scarr E, Dean B, Hannan AJ (2009) Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: association with N-methyl-D-aspartic acid receptor up-regulation. Int J Neuropsychopharmacol 12:45–60

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock JM, Lister S, Fischer TR, Wettstein JG (1997) Disruption of latent inhibition in the rat by the 5-HT2 agonist DOI: effects of MDL 100,907, clozapine, risperidone and haloperidol. Behav Brain Res 88:43–49

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Dai J, Meltzer HY (2001) DOI, a 5-HT2A/2C receptor agonist, attenuates clozapine-induced cortical dopamine release. Brain Res 907:151–155

    Article  PubMed  CAS  Google Scholar 

  • Jann MW, Grimsley SR, Gray EC, Chang WH (1993) Pharmacokinetics and pharmacodynamics of clozapine. Clin Pharmacokinet 24:161–176

    Article  PubMed  CAS  Google Scholar 

  • Jones KA, Srivastava DP, Allen JA, Strachan RT, Roth BL, Penzes P (2009) Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc Natl Acad Sci U S A 106:19575–19580

    Article  PubMed  CAS  Google Scholar 

  • Kargieman L, Riga MS, Artigas F, Celada P (2011) Clozapine reverses phencyclidine-induced desynchronization of prefrontal cortex through a 5-HT(1A) Receptor-dependent mechanism. Neuropsychopharmacology 37:723–733

    Article  PubMed  Google Scholar 

  • Kontkanen O, Lakso M, Wong G, Castren E (2002a) Chronic antipsychotic drug treatment induces long-lasting expression of fos and jun family genes and activator protein 1 complex in the rat prefrontal cortex. Neuropsychopharmacology 27:152–162

    Article  PubMed  CAS  Google Scholar 

  • Kontkanen O, Toronen P, Lakso M, Wong G, Castren E (2002b) Antipsychotic drug treatment induces differential gene expression in the rat cortex. J Neurochem 83:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH (2007) NMDA receptors and schizophrenia. Curr Opin Pharmacol 7:48–55

    Article  PubMed  CAS  Google Scholar 

  • Kuoppamaki M, Seppala T, Syvalahti E, Hietala J (1993) Chronic clozapine treatment decreases 5-hydroxytryptamine1C receptor density in the rat choroid plexus: comparison with haloperidol. J Pharmacol Exp Ther 264:1262–1267

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Bymaster FP, Meltzer HY, Deutch AY, Duncan GE, Marx CE, Aprille JR, Dwyer DS, Li XM, Mahadik SP, Duman RS, Porter JH, Modica-Napolitano JS, Newton SS, Csernansky JG (2008) Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 60:358–403

    Article  PubMed  CAS  Google Scholar 

  • Lin SK, Chang WH, Chung MC, Lam YW, Jann MW (1994) Disposition of clozapine and desmethylclozapine in schizophrenic patients. J Clin Pharmacol 34:318–324

    PubMed  CAS  Google Scholar 

  • MacDonald ML, Eaton ME, Dudman JT, Konradi C (2005) Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat. Biol Psychiatry 57:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Duncan GE, Marx CE, Lieberman JA (2005) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10:79–104

    Article  PubMed  CAS  Google Scholar 

  • Morris BJ, Cochran SM, Pratt JA (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181

    Article  PubMed  CAS  Google Scholar 

  • Ouagazzal A, Grottick AJ, Moreau J, Higgins GA (2001) Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology 25:565–575

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359

    Article  PubMed  CAS  Google Scholar 

  • Sams-Dodd F (1998) A test of the predictive validity of animal models of schizophrenia based on phencyclidine and D-amphetamine. Neuropsychopharmacology 18:293–304

    Article  PubMed  CAS  Google Scholar 

  • Sawa A, Snyder SH (2002) Schizophrenia: diverse approaches to a complex disease. Science 296:692–695

    Article  PubMed  CAS  Google Scholar 

  • Schreiber R, Brocco M, Millan MJ (1994) Blockade of the discriminative stimulus effects of DOI by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur J Pharmacol 264:99–102

    Article  PubMed  CAS  Google Scholar 

  • Singleton C, Marsden CA (1981) Circadian variation in the head twitch response produced by 5-methoxy-N1, N1-dimethyltryptamine and p-chloroamphetamine in the mouse. Psychopharmacology (Berl) 74:173–176

    Article  CAS  Google Scholar 

  • Smith RL, Barrett RJ, Sanders-Bush E (2003) Discriminative stimulus properties of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(+/−)DOI] in C57BL/6J mice. Psychopharmacology (Berl) 166:61–68

    CAS  Google Scholar 

  • Verma V, Rasmussen K, Dawe GS (2006) Effects of short-term and chronic olanzapine treatment on immediate early gene protein and tyrosine hydroxylase immunoreactivity in the rat locus coeruleus and medial prefrontal cortex. Neuroscience 143:573–585

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O, Angst J (1997) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16:357–372

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9:3897–3902

    Article  PubMed  CAS  Google Scholar 

  • Wang RY, Liang X (1998) M100907 and clozapine, but not haloperidol or raclopride, prevent phencyclidine-induced blockade of NMDA responses in pyramidal neurons of the rat medial prefrontal cortical slice. Neuropsychopharmacology 19:74–85

    Article  PubMed  CAS  Google Scholar 

  • Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706

    PubMed  CAS  Google Scholar 

  • Winter JC, Kieres AK, Zimmerman MD, Reissig CJ, Eckler JR, Ullrich T, Rice KC, Rabin RA, Richards JB (2005) The stimulus properties of LSD in C57BL/6 mice. Pharmacol Biochem Behav 81:830–837

    Article  PubMed  CAS  Google Scholar 

  • Yadav PN, Abbas AI, Farrell MS, Setola V, Sciaky N, Huang XP, Kroeze WK, Crawford LK, Piel DA, Keiser MJ, Irwin JJ, Shoichet BK, Deneris ES, Gingrich J, Beck SG, Roth BL (2011a) The presynaptic component of the serotonergic system is required for clozapine's efficacy. Neuropsychopharmacology 36:638–651

    Article  PubMed  CAS  Google Scholar 

  • Yadav PN, Kroeze WK, Farrell MS, Roth BL (2011b) Antagonist functional selectivity: 5-HT2A serotonin receptor antagonists differentially regulate 5-HT2A receptor protein level in vivo. J Pharmacol Exp Ther 339:99–105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

NIMH 5R01MH084894 (J.G.M.), NIDA P01 DA12923 (S.C.S.), NARSAD (J.G.M.), the Mortimer D. Sackler Foundation Award (J.G.M.), and Dainippon Sumitomo Pharma (J.G.M.) participated in the funding of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González-Maeso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, J.L., Holloway, T., Umali, A. et al. Persistent effects of chronic clozapine on the cellular and behavioral responses to LSD in mice. Psychopharmacology 225, 217–226 (2013). https://doi.org/10.1007/s00213-012-2809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2809-7

Keywords

Navigation