Skip to main content

Advertisement

Log in

Effects of Doxycycline in Swiss Mice Predictive Models of Schizophrenia

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Schizophrenia patients show very complex symptoms in several psychopathological domains. Some of these symptoms remain poorly treated. Therefore, continued effort is needed to find novel pharmacological strategies for improving schizophrenia symptoms. Recently, minocycline, a second-generation tetracycline, has been suggested as an adjunctive treatment for schizophrenia. The antipsychotic-like effect of doxycycline, a minocycline analog, was investigated here. We found that both minocycline and doxycycline prevented amphetamine-induced prepulse inhibition (PPI) disruption. However, neither of them blocked MK801-induced effects, albeit doxycycline had a modest impact against ketamine-induced effects. Neither c-Fos nor nNOS expression, which was evaluated in limbic regions, were modified after acute or sub-chronic treatment with doxycycline. Therefore, apomorphine inducing either PPI disruption and climbing behavior was not prevented by doxycycline. This result discards a direct blockade of D2-like receptors, also suggested by the lack of doxycycline cataleptic-induced effect. Contrasting, doxycycline prevented SKF 38393-induced effects, suggesting a preferential doxycycline action at D1-like rather than D2-like receptors. However, doxycycline did not bind to the orthosteric sites of D1, D2, D3, D4, 5-HT2A, 5-HT1A, and A2A receptors suggesting no direct modulation of these receptors. Our data corroborate the antipsychotic-like effect of doxycycline. However, these effects are probably not mediated by doxycycline direct interaction with classical receptors enrolled in the antipsychotic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arango C, Buchanan RW, Kirkpatrick B, Carpenter WT (2004) The deficit syndrome in schizophrenia: implications for the treatment of negative symptoms. Eur Psychiatry 19:21–26

    Google Scholar 

  • Arnoux I, Hoshiko M, Sanz Diez A, Audinat E (2014) Paradoxical effects of minocycline in the developing mouse somatosensory cortex. Glia 62:399–410

    Google Scholar 

  • Balducci C, Forloni G (2019) Doxycycline for Alzheimer’s disease: fighting β-amyloid oligomers and neuroinflammation. Front Pharmacol 3(10):738

    Google Scholar 

  • Ballesteros-Yáñez I, Castillo CA, Merighi S, Gessi S (2017) The role of adenosine receptors in psychostimulant addiction. Front Pharmacol 8:985

    Google Scholar 

  • Ben-Azu B, Omogbiya IA, Aderibigbe AO, Umukoro S, Ajayi AM, Iwalewa EO (2018) Doxycycline prevents and reverses schizophrenic-like behaviors induced by ketamine in mice via modulation of oxidative, nitrergic and cholinergic pathways. Brain Res Bull 139:114–124

    CAS  Google Scholar 

  • Betti AH, Antonio CB, Pompeu TE, Martins TS, Herzfeldt V, Stolz ED, Fraga CA, Barreiro E, Noël F, Rates SM (2017) LASSBio-1422: a new molecular scaffold with efficacy in animal models of schizophrenia and disorders of attention and cognition. Behav Pharmacol 28:48–62

    CAS  Google Scholar 

  • Carpenter WT, Davis JM (2012) Another view of the history of antipsychotic drug discovery and development. Mol Psychiatry 17:1168–1173

    CAS  Google Scholar 

  • Chaudhry IB, Hallak J, Husain N, Minhas F, Stirling J, Richardson P, Dursun S, Dunn G, Deakin B (2012) Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J Psychopharmacol 26:1185–1193

    Google Scholar 

  • Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Park CH, Jeong YH, Yoo J, Lee JP, Chang KA, Kim S, Suh YH (2007) Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology 32:2393–2404

    CAS  Google Scholar 

  • Coyle JT (2012) NMDA receptor and schizophrenia: a brief history. Schizophr Bull 38:920–926

    PubMed  PubMed Central  Google Scholar 

  • Coyle JT, Tsai G, Goff D (2003) Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann N Y Acad Sci 1003:318–327

    CAS  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    CAS  Google Scholar 

  • De Keyser J, De Backer J-P, Wilczak N, Herroelen L (1995) Dopamine agonists used in the treatment of Parkinson’s disease and their selectivity for the D1, D2, and D3 dopamine receptors in human striatum. Prog Neuro-Psychopharmacol Biol Psychiatry 19(7):1147–1154

    Google Scholar 

  • Deutch AY, Duman RS (1996) The effects of antipsychotic drugs on Fos protein expression in the prefrontal cortex: cellular localization and pharmacological characterization. Neuroscience 70:377–389

    CAS  Google Scholar 

  • Dokuyucu R, Kokacya H, Inanir S, Copoglu US, Erbas O (2014) Antipsychotic-like effect of minocycline in a rat model. Int J Clin Exp Med 7:3354–3361

    PubMed  PubMed Central  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    CAS  Google Scholar 

  • Giovanoli S, Engler H, Engler A, Richetto J, Feldon J, Riva MA, Schedlowski M, Meyer U (2016) Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia. Transl Psychiatry 6:e772

    CAS  PubMed  PubMed Central  Google Scholar 

  • González-Lizárraga F, Socías SB, Ávila CL, Torres-Bugeau CM, Barbosa LR, Binolfi A, Sepúlveda-Díaz JE, Del-Bel E, Fernandez CO, Papy-Garcia D, Itri R, Raisman-Vozari R, Chehín RN (2017) Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep 7:41755

    PubMed  PubMed Central  Google Scholar 

  • Griffin MO, Ceballos G, Villarreal FJ (2011) Tetracycline compounds with non-antimicrobial organ protective properties: possible mechanisms of action. Pharmacol Res 63:102–107

    CAS  Google Scholar 

  • Hashimoto K, Ishima T (2010) Correction: a novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: translation initiator factor eIF4AI. PLoS One 5(12)

  • Hyman SE, Fenton WS (2003) Medicine. What are the right targets for psychopharmacology? Science 299:350–351

    CAS  Google Scholar 

  • Inta I, Vogt MA, Vogel AS, Bettendorf M, Gass P, Inta D (2016) Minocycline exacerbates apoptotic neurodegeneration induced by the NMDA receptor antagonist MK-801 in the early postnatal mouse brain. Eur Arch Psychiatry Clin Neurosci 266:673–677

    Google Scholar 

  • Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P (2017) Microglia activation and schizophrenia: lessons from the effects of minocycline on postnatal neurogenesis, Neuronal Survival and Synaptic Pruning. Schizophr Bull 43:493–496

    Google Scholar 

  • Issy AC, Salum C, Del Bel EA (2009) Nitric oxide modulation of methylphenidate-induced disruption of prepulse inhibition in Swiss mice. Behav Brain Res 205:475–481

    CAS  PubMed  Google Scholar 

  • Issy AC, Dos-Santos-Pereira M, Pedrazzi JFC, Kubrusly RCC, Del-Bel E (2018) The role of striatum and prefrontal cortex in the prevention of amphetamine-induced schizophrenia-like effects mediated by nitric oxide compounds. Prog Neuro-Psychopharmacol Biol Psychiatry 86:353–362

    CAS  Google Scholar 

  • Jones CA, Watson DJ, Fone KC (2011) Animal models of schizophrenia. Br J Pharmacol 164:1162–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kane JM (1996) Treatment-resistant schizophrenic patients. J Clin Psychiatry 57(Suppl 9):35–40

    Google Scholar 

  • Kapur S, Remington G (2001) Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol Psychiatry 50:873–883

    CAS  Google Scholar 

  • Keefe RS (2007) Cognitive deficits in patients with schizophrenia: effects and treatment. J Clin Psychiatry 68(Suppl 14):8–13

    Google Scholar 

  • Kelly DL, Sullivan KM, McEvoy JP, McMahon RP, Wehring HJ, Gold JM, Liu F, Warfel D, Vyas G, Richardson CM, Fischer BA, Keller WR, Koola MM, Feldman SM, Russ JC, Keefe RS, Osing J, Hubzin L, August S, Walker TM, Buchanan RW (2015) Adjunctive minocycline in clozapine-treated schizophrenia patients with persistent symptoms. J Clin Psychopharmacol 35:374–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Powell SB (2018) Sensorimotor gating deficits in “two-hit” models of schizophrenia risk factors. Schizophr Res 198:68–83

    Google Scholar 

  • Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97:153–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzarini M, Martin S, Mitkovski M, Vozari RR, Stühmer W, Bel ED (2013) Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia 61:1084–1100

    Google Scholar 

  • Levkovitz Y, Levi U, Braw Y, Cohen H (2007) Minocycline, a second-generation tetracycline, as a neuroprotective agent in an animal model of schizophrenia. Brain Res 1154:154–162

    CAS  Google Scholar 

  • Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28:325–334

    CAS  Google Scholar 

  • Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK, Investigators CAT o IEC (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223

    CAS  Google Scholar 

  • Liu F, Guo X, Wu R, Ou J, Zheng Y, Zhang B, Xie L, Zhang L, Yang L, Yang S, Yang J, Ruan Y, Zeng Y, Xu X, Zhao J (2014) Minocycline supplementation for treatment of negative symptoms in early-phase schizophrenia: a double blind, randomized, controlled trial. Schizophr Res 153:169–176

    Google Scholar 

  • Meltzer HY (2013) Update on typical and atypical antipsychotic drugs. Annu Rev Med 64:393–406

    CAS  Google Scholar 

  • Miyaoka T, Yasukawa R, Yasuda H, Hayashida M, Inagaki T, Horiguchi J (2007) Possible antipsychotic effects of minocycline in patients with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 31:304–307

    CAS  Google Scholar 

  • Moghaddam B, Krystal JH (2012) Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull 38(5):942–949

    PubMed  PubMed Central  Google Scholar 

  • Monte AS, de Souza GC, McIntyre RS, Soczynska JK, dos Santos JV, Cordeiro RC, Ribeiro BMM, de Lucena DF, Vasconcelos SMM, de Sousa FCF, Carvalho AF, Macêdo DS (2013) Prevention and reversal of ketamine-induced schizophrenia related behavior by minocycline in mice: possible involvement of antioxidant and nitrergic pathways. J Psychopharmacol 27(11):1032–1043

    Google Scholar 

  • Moore NA, Axton MS (1988) Production of climbing behaviour in mice requires both D1 and D2 receptor activation. Psychopharmacology 94(2):263–266

  • Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12:459–462

    CAS  Google Scholar 

  • Murray RM, Lappin J, Di Forti M (2008) Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsychopharmacol 18(Suppl 3):S129–S134

    CAS  Google Scholar 

  • Noël F, do Monte FM (2017) Validation of a Na. J Pharmacol Toxicol Methods 84:51–56

    Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    CAS  Google Scholar 

  • Pandy V, Vijeepallam K (2017) Antipsychotic-like activity of scopoletin and rutin against the positive symptoms of schizophrenia in mouse models. Exp Anim 66:417–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pompeu TET, Alves FRS, Figueiredo CDM, Antonio CB, Herzfeldt V, Moura BC, Rates SMK, Barreiro EJ, Fraga CAM, Noël F (2013) Synthesis and pharmacological evaluation of new N-phenylpiperazine derivatives designed as homologues of the antipsychotic lead compound LASSBio-579. Eur J Med Chem 66:122–134

    CAS  Google Scholar 

  • Robertson GS, Fibiger HC (1996) Effects of olanzapine on regional C-Fos expression in rat forebrain. Neuropsychopharmacology 14:105–110

    CAS  Google Scholar 

  • Rogóż Z, Kamińska K (2016) The effect of combined treatment with escitalopram and risperidone on the MK-801-induced changes in the object recognition test in mice. Pharmacol Rep 68(1):116–120

    Google Scholar 

  • Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102:748–759

    CAS  Google Scholar 

  • Santa-Cecília FV, Socias B, Ouidja MO, Sepulveda-Diaz JE, Acuña L, Silva RL, Michel PP, Del-Bel E, Cunha TM, Raisman-Vozari R (2016) Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotox Res 29:447–459

    Google Scholar 

  • Sarkar S, Hillner K, Velligan DI (2015) Conceptualization and treatment of negative symptoms in schizophrenia. World J Psychiatry 5:352–361

    PubMed  PubMed Central  Google Scholar 

  • Seeman P (2013) Schizophrenia and dopamine receptors. Eur Neuropsychopharmacol 23:999–1009

    CAS  Google Scholar 

  • Smith K, Leyden JJ (2005) Safety of doxycycline and minocycline: a systematic review. Clin Ther 27:1329–1342

    CAS  Google Scholar 

  • Soczynska JK, Mansur RB, Brietzke E, Swardfager W, Kennedy SH, Woldeyohannes HO, Powell AM, Manierka MS, McIntyre RS (2012) Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res 235(2):302–317

    CAS  Google Scholar 

  • Solmi M, Veronese N, Thapa N, Facchini S, Stubbs B, Fornaro M, Carvalho AF, Correll CU (2017) Systematic review and meta-analysis of the efficacy and safety of minocycline in schizophrenia. CNS Spectr 22:415–426

    Google Scholar 

  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308–322

    CAS  Google Scholar 

  • Suzuki T, Remington G, Mulsant BH, Uchida H, Rajji TK, Graff-Guerrero A, Mimura M, Mamo DC (2012) Defining treatment-resistant schizophrenia and response to antipsychotics: a review and recommendation. Psychiatry Res 197:1–6

    Google Scholar 

  • Swerdlow NR, Light GA (2018) Sensorimotor gating deficits in schizophrenia: advancing our understanding of the phenotype, its neural circuitry and genetic substrates. Schizophr Res 198:1–5

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    CAS  Google Scholar 

  • Snyder EM, Murphy MR (2008) Schizophrenia therapy: beyond atypical antipsychotics. Nat Rev Drug Discov 7(6):471–472

    CAS  Google Scholar 

  • Vaisburd S, Shemer Z, Yeheskel A, Giladi E, Gozes I (2015) Risperidone and NAP protect cognition and normalize gene expression in a schizophrenia mouse model. Sci Rep 5:16300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wadenberg ML, Kapur S, Soliman A, Jones C, Vaccarino F (2000) Dopamine D2 receptor occupancy predicts catalepsy and the suppression of conditioned avoidance response behavior in rats. Psychopharmacology 150:422–429

    CAS  Google Scholar 

  • Yadav M, Parle M, Sharma N, Dhingra S, Raina N, Jindal DK (2017) Brain targeted oral delivery of doxycycline hydrochloride encapsulated tween 80 coated chitosan nanoparticles against ketamine induced psychosis: behavioral, biochemical, neurochemical and histological alterations in mice. Drug Deliv 24:1429–1440

    CAS  Google Scholar 

  • Yim CW, Flynn NM, Fitzgerald FT (1985) Penetration of oral doxycycline into the cerebrospinal fluid of patients with latent or neurosyphilis. Antimicrob Agents Chemother 28:347–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zheng H, Wu R, Kosten TR, Zhang X-Y, Zhao J (2019) The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels in patients with schizophrenia. Schizophr Res 212:92–98

    Google Scholar 

  • Zhu F, Zheng Y, Ding YQ, Liu Y, Zhang X, Wu R, Guo X, Zhao J (2014) Minocycline and risperidone prevent microglia activation and rescue behavioral deficits induced by neonatal intrahippocampal injection of lipopolysaccharide in rats. PLoS One 9:e93966

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Vitor Castania (Ph.D.) and Célia Aparecida da Silva for their technical support and Mariza Bortolanza (Ph.D.) for her useful discussion of our data. The equipment and drugs used in this work were acquired from FAPESP, CNPq, CAPES, Brazil. The experiments presented in this manuscript comply with the current Brazilian laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Del-Bel.

Ethics declarations

Conflict of Interest

There are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issy, A.C., Pedrazzi, J.F.C., van Oosten, A.B.S. et al. Effects of Doxycycline in Swiss Mice Predictive Models of Schizophrenia. Neurotox Res 38, 1049–1060 (2020). https://doi.org/10.1007/s12640-020-00268-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00268-z

Keywords

Navigation