Skip to main content

Advertisement

Log in

The intriguing effects of ecstasy (MDMA) on cognitive function in mice subjected to a minimal traumatic brain injury (mTBI)

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The use of ecstasy (MDMA) among young adults has dramatically increased over the years. Since MDMA may impair the users' driving ability, the risk of being involved in a motor vehicle accident (MVA) is notably increased. Minimal traumatic brain injury (mTBI) a common consequence of MVAs—produces short- and long-term physical, cognitive, and emotional impairments.

Objectives

To investigate the effects of an acute dose of MDMA in mice subjected to closed head mTBI.

Methods

Mice received 10 mg/kg MDMA 1 h prior to the induction of mTBI. Behavioral tests were conducted 7 and 30 days post-injury. In addition to the behavioral tests, phosphorylation of IGF-1R, ERK, and levels of tyrosine hydroxylase (TH) were measured.

Results

mTBI mice showed major cognitive impairments in all cognitive tests conducted. No additional impairments were seen if mTBI was preceded by one dose of MDMA. On the contrary, a beneficial effect was seen in these mice. The western blot analysis of TH revealed a significant decrease in the mTBI mice. These decreases were reversed in mice that were subjected to MDMA prior to the trauma.

Conclusions

The presence of MDMA at the time of mTBI minimizes the alteration of visual and spatial memory of the injured mice. The IGF-1R pathway was activated due to mTBI and MDMA but was not the main contributor to the cognitive improvements. MDMA administration inverted the TH decreases seen after injury. We believe this may be the major cause of the cognitive improvements seen in these mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Able JA, Guldelsky GA, Vorhees CV, Williams MT (2006) 3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory. Biol Psychiatry 59:1219–1226

    Article  PubMed  CAS  Google Scholar 

  • Alcalay RN, Giladi E, Pick CG, Gozes I (2004) Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neurosci Lett 361:128–131

    Article  PubMed  CAS  Google Scholar 

  • Alexander MP (1995) Mild traumatic brain injury—pathophysiology, natural-history, and clinical management. Neurology 45:1253–1260

    PubMed  CAS  Google Scholar 

  • Bales JW, Wagner AK, Kline AE, Dixon CE (2009) Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev 33:981–1003

    Article  PubMed  CAS  Google Scholar 

  • Baratz R, Rubovitch V, Frenk H, Pick CG (2010) The influence of alcohol on behavioral recovery after mTBI in mice. J Neurotrauma 27:555–563

    Article  PubMed  Google Scholar 

  • Bayir H, Kagan VE (2008) Bench-to-bedside review: mitochondrial injury, oxidative stress and apoptosis—there is nothing more practical than a good theory. Critical Care 12:206

    Article  PubMed  Google Scholar 

  • Bazarian JJ, McClung J, Shah MN, Cheng YT, Flesher W, Kraus J (2005) Mild traumatic brain injury in the United States, 1998–2000. Brain Inj 19:85–91

    Article  PubMed  Google Scholar 

  • Brookhuis KA, de Waard D, Samyn N (2004) Effects of MDMA (ecstasy), and multiple drugs use on (simulated) driving performance and traffic safety. Psychopharmacology 173:440–445

    Article  PubMed  CAS  Google Scholar 

  • Brown PL, Kiyatkin EA (2004) Brain hyperthermia induced by MDMA (‘ecstasy’): modulation by environmental conditions. Eur J Neurosci 20:51–58

    Article  PubMed  CAS  Google Scholar 

  • Bullinger M (2002) Quality of life in patients with traumatic brain injury—basic issues, assessment and recommendations—results of a consensus meeting. Restor Neurol Neurosci 20:111–124

    PubMed  CAS  Google Scholar 

  • Cadet JL, Thiriet N, Jayanthi S (2001) Involvement of free radicals in MDMA-induced neurotoxicity in mice. Ann Méd Interne 152:S57–S59

    Google Scholar 

  • Camarasa J, Marimon JM, Rodrigo T, Escubedo E, Pubill D (2008) Memantine prevents the cognitive impairment induced by 3,4-methylenedioxymethamphetamine in rats. Eur J Pharmacol 589:132–139

    Article  PubMed  CAS  Google Scholar 

  • Camarero J, Sanchez V, O’Shea E, Green AR, Colado MI (2002) Studies, using in vivo microdialysis, on the effect of the dopamine uptake inhibitor GBR 12909 on 3,4-methylenedioxymethamphetamine (‘ecstasy’)-induced dopamine release and free radical formation in the mouse striatum. J Neurochem 81:961–972

    Article  PubMed  CAS  Google Scholar 

  • Capela JP, Fernandes E, Remiao F, Bastos ML, Meisel A, Carvalho F (2007) Ecstasy induces apoptosis via 5-HT2A-receptor stimulation in cortical neurons. Neurotoxicology 28:868–875

    Article  PubMed  CAS  Google Scholar 

  • Capela JP, Carmo H, Remiao F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Carvalho F, Remiao F, Pereira MD, Pires-das-Neves R, Bastos MD (2002) Effect of 3,4-methylenedioxymethampheta mine (“ecstasy”) on body temperature and liver antioxidant status in mice: influence of ambient temperature. Arch Toxicol 76:166–172

    Article  PubMed  CAS  Google Scholar 

  • Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L, Kraus J, Coronado VG (2004) Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO collaborating centre task force on mild traumatic brain injury. J Rehabil Med 36:28–60

    Article  Google Scholar 

  • Cheng CM, Mervis RF, Niu SL, Salem N, Witters LA, Tseng V, Reinhardt R, Bondy CA (2003) Insulin-like growth factor 1 is essential for normal dendritic growth. J Neurosci Res 73:1–9

    Article  PubMed  CAS  Google Scholar 

  • Chong ZZ, Li FQ, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246

    Article  PubMed  CAS  Google Scholar 

  • Colado MI, Camarero J, Meehan AO, Sanchez V, Esteban B, Elliott JM, Green AR (2001) A study of the mechanisms involved in the neurotoxic action of 3, 4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) on dopamine neurones in mouse brain. Br J Pharmacol 134:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Colado MI, O'Shea E, Green AR (2004) Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology 173:249–263

    Article  PubMed  CAS  Google Scholar 

  • Conrad CD, Galea LAM, Kuroda Y, McEwen BS (1996) Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110:1321–1334

    Article  PubMed  CAS  Google Scholar 

  • Darke S, Kelly E, Ross J (2004) Drug driving among injecting drug users in Sydney, Australia: prevalence, risk factors and risk perceptions. Addiction 99:175–185

    Article  PubMed  Google Scholar 

  • Dellu F, Mayo W, Cherkaoui J, Lemoal M, Simon H (1992) A 2-trial memory task with automated recording—study in young and aged rats. Brain Res 588:132–139

    Article  PubMed  CAS  Google Scholar 

  • Dhillon HS, Dose JM, Prasad RM (1998) Amphetamine administration improves neurochemical outcome of lateral fluid percussion brain injury in the rat. Brain Res 804:231–237

    Article  PubMed  CAS  Google Scholar 

  • Donnemiller E, Brenneis C, Wissel J, Scherfler C, Poewe W, Riccabona G, Wenning GK (2000) Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPET study using I-123-beta-CIT and I-123-IBZM. Eur J Nucl Med 27:1410–1414

    Article  PubMed  CAS  Google Scholar 

  • Drummer OH, Gerostamoulos J, Batziris H, Chu M, Caplehorn JRM, Robertson MD, Swann P (2003) The incidence of drugs in drivers killed in Australian road traffic crashes. Forensic Sci Int 134:154–162

    Article  PubMed  Google Scholar 

  • Evans RW, Gualtieri CT, Patterson D (1987) Treatment of chronic closed head-injury with psychostimulant drugs—a controlled case-study and an appropriate evaluation procedure. J Nerv Ment Dis 175:106–110

    Article  PubMed  CAS  Google Scholar 

  • Fantegrossi WE, Ciullo JR, Wakabayashi KT, De la Garza R, Traynor JR, Woods JH (2008) A comparison of the physiological, behavioral, neurochemical and microglial effects of methamphetamine and 3, 4-methylenedioxymethamphetamine in the mouse. Neuroscience 151:533–543

    Article  PubMed  CAS  Google Scholar 

  • Fleminger S (2008) Long-term psychiatric disorders after traumatic brain injury. Eur J Anaesthesiol Suppl 42:123–130

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto ST, Longhi L, Saatman KE, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28:365–378

    Article  PubMed  Google Scholar 

  • Gennarelli TA, Champion HR, Copes WS, Sacco WJ (1994) Comparison of mortality, morbidity, and severity of 59,713 head-injured patients with 114,447 patients with extracranial injuries. J Trauma Inj Infect Crit Care 37:962–968

    Article  CAS  Google Scholar 

  • Graham DI, McIntosh TK, Maxwell WL, Nicoll JAR (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59:641–651

    PubMed  CAS  Google Scholar 

  • Granado N, Escobedo I, O'Shea E, Colado MI, Moratalla R (2008) Early loss of dopaminergic terminals in striosomes after MDMA administration to mice. Synapse 62:80–84

    Article  PubMed  CAS  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3, 4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  PubMed  CAS  Google Scholar 

  • Green AR, Gabrielsson J, Marsden CA, Fone KCF (2009) MDMA: on the translation from rodent to human dosing. Psychopharmacology 204:375–378

    Article  PubMed  CAS  Google Scholar 

  • Guan J, Bennet L, Gluckman PD, Gunn AJ (2003) Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol 70:443–462

    PubMed  CAS  Google Scholar 

  • Gudelsky GA, Yamamoto BK (2008) Actions of 3,4-methylenedioxymethamphetamine (MDMA) on cerebral dopaminergic, serotonergic and cholinergic neurons. Pharmacol Biochem Behav 90:198–207

    Article  PubMed  CAS  Google Scholar 

  • Haavik J, Toska K (1998) Tyrosine hydroxylase and Parkinson's disease. Mol Neurobiol 16:285–309

    Article  PubMed  CAS  Google Scholar 

  • Hamm RJ, Lyeth BG, Jenkins LW, Odell DM, Pike BR (1993) Selective cognitive impairment following traumatic brain injury in rats. Behav Brain Res 59:169–173

    Article  PubMed  CAS  Google Scholar 

  • Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82:26–34

    Article  PubMed  Google Scholar 

  • Henry JM, Talukder NK, Lee AB, Walker ML (1997) Cerebral trauma-induced changes in corpus striatal dopamine receptor subtypes. J Investig Surg 10:281–286

    Article  CAS  Google Scholar 

  • Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54:21–30

    Article  PubMed  CAS  Google Scholar 

  • Hooft PJ, Vandevoorde HP (1994) Reckless behavior related to the use of 3,4-methylenedioxymethamphetamine (ecstasy)—apropos of a fatal accident during car-surfing. Int J Leg Med 106:328–329

    Article  CAS  Google Scholar 

  • Kern CH, Stanwood GD, Smith DR (2009) Preweaning manganese exposure causes hyperactivity, disinhibition, and spatial learning and memory deficits associated with altered dopamine receptor and transporter levels. Synapse 64:363–378

    Article  CAS  Google Scholar 

  • Kleim JA, Jones TA, Schallert T (2003) Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res 28:1757–1769

    Article  PubMed  CAS  Google Scholar 

  • Kumer SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67:443–462

    Article  PubMed  CAS  Google Scholar 

  • Kushner D (1998) Mild traumatic brain injury—toward understanding manifestations and treatment. Arch Intern Med 158:1617–1624

    Article  PubMed  CAS  Google Scholar 

  • Kuypers KPC, Bosker WM, Ramaekers JG (2009) Ecstasy, driving and traffic safety. In: Joris C. Verster, S. R. Pandi-Perumal, Jan G. Ramaekers (eds.) Drugs, driving and traffic safety 501–518 Switzerland: Birkhauser Verlag AG

    Chapter  Google Scholar 

  • Logan BK, Couper FJ (2001) 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) and driving impairment. J Forensic Sci 46:1426–1433

    PubMed  CAS  Google Scholar 

  • Maas AIR, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    Article  PubMed  Google Scholar 

  • Margulies S (2000) The postconcussion syndrome after mild head trauma: is brain damage overdiagnosed? Part 1. J Clin Neurosci 7:400–408

    Article  PubMed  CAS  Google Scholar 

  • McBeth BD, Stern SA, Wang X, Mertz M, Zink BJ (2005) Effects of cocaine in an experimental model of traumatic brain injury. Acad Emerg Med 12:483–490

    Article  PubMed  Google Scholar 

  • McGregor IS, Clemens KJ, Van der Plasse G, Li KM, Hunt GE, Chen F, Lawrence AJ (2003) Increased anxiety 3 months after brief exposure to MDMA (“ecstasy”) in rats: association with altered 5-HT transporter and receptor density. Neuropsychopharmacology 28:1472–1484

    Article  PubMed  CAS  Google Scholar 

  • McIntosh TK, Yu T, Gennarelli TA (1994) Alterations in regional brain catecholamine concentrations after experimental brain injury in the rat. J Neurochem 63:1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Milman A, Rosenberg A, Weizman R, Pick CG (2005) Mild traumatic brain injury induces persistent cognitive deficits and behavioral disturbances in mice. J Neurotrauma 22:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Milman A, Weizman R, Rigai T, Rice KC, Pick CG (2006) Behavioral effects of opioid subtypes compared with benzodiazepines in the staircase paradigm. Behav Brain Res 170:141–147

    Article  PubMed  CAS  Google Scholar 

  • Milman A, Zohar O, Maayan R, Weizman R, Pick CG (2008) DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur Neuropsychopharmacol 18:181–187

    Article  PubMed  CAS  Google Scholar 

  • Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, Longhi L, Laurer H, Maegele M, Neugebauer E, Graham DI, Stocchetti N, McIntosh TK (2005) Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 136:971–989

    Article  PubMed  CAS  Google Scholar 

  • Morgan MJ (2000) Ecstasy (MDMA): a review of its possible persistent psychological effects. Psychopharmacology 152:230–248

    Article  PubMed  CAS  Google Scholar 

  • Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  • Morton J (2005) Ecstasy: pharmacology and neurotoxicity. Curr Opin Pharmacol 5:79–86

    Article  PubMed  CAS  Google Scholar 

  • Movig KLL, Mathijssen MPM, Nagel PHA, van Egmond T, de Gier JJ, Leufkens HGM, Egberts ACG (2004) Psychoactive substance use and the risk of motor vehicle accidents. Accid Anal Prev 36:631–636

    Article  PubMed  CAS  Google Scholar 

  • Nochajski TH, Stasiewicz PR (2006) Relapse to driving under the influence (DUI): a review. Clin Psychol Rev 26:179–195

    Article  PubMed  Google Scholar 

  • O’Phelan K, McArthur DL, Chang CWJ, Green D, Hovda DA (2008) The impact of substance abuse on mortality in patients with severe traumatic brain injury. J Trauma Inj Infect Crit Care 65:674–677

    Article  CAS  Google Scholar 

  • Petrasek T, Stuchlik A (2009) Serotonin-depleted rats are capable of learning in active place avoidance, a spatial task requiring cognitive coordination. Physiol Res 58:299–303

    PubMed  CAS  Google Scholar 

  • Pick CG, Cheng J, Paul D, Pasternak GW (1991) Genetic influences in opioid analgesic sensitivity in mice. Brain Res 566:295–298

    Article  PubMed  CAS  Google Scholar 

  • Pick CG, Peter Y, Schreiber S, Weizman R (1997) Pharmacological characterization of buprenorphine, a mixed agonist-antagonist with kappa 3 analgesia. Brain Res 744:41–46

    Article  PubMed  CAS  Google Scholar 

  • Piper BJ, Meyer JS (2004) Memory deficit and reduced anxiety in young adult rats given repeated intermittent MDMA treatment during the periadolescent period. Pharmacol Biochem Behav 79:723–731

    Article  PubMed  CAS  Google Scholar 

  • Piper BJ, Fraiman JB, Meyer JS (2005) Repeated MDMA (“ecstasy”) exposure in adolescent male rats alters temperature regulation, spontaneous motor activity, attention, and serotonin transporter binding. Dev Psychobiol 47:145–157

    Article  PubMed  CAS  Google Scholar 

  • Rubovitch V, Edut S, Sarfstein R, Werner H, Pick CG (2010) The intricate involvement of the insulin-like growth factor receptor signaling in mild traumatic brain injury in mice. Neurobiol Dis 2:299–303

    Article  CAS  Google Scholar 

  • Ryan LM, Warden DL (2003) Post concussion syndrome. Int Rev Psychiatry 15:310–316

    Article  PubMed  Google Scholar 

  • Schreiber S, Barkai G, Gur-Hartman T, Peles E, Tov N, Dolberg OT, Pick CG (2008) Long-lasting sleep patterns of adult patients with minor traumatic brain injury (mTBI) and non-mTBI subjects. Sleep Med 9:481–487

    Article  PubMed  Google Scholar 

  • Shein NA, Horowitz M, Shohami E (2007) Heat acclimation: a unique model of physiologically mediated global preconditioning against traumatic brain injury. In: Weber JT, Maas AIR (eds) Neurotrauma: new insights into pathology and treatment (progress in brain research). Elsevier, Amsterdam, pp 353–363

    Chapter  Google Scholar 

  • Shohami E, Gati I, Beit-Yannai E, Trembovler V, Kohen R (1999) Closed head injury in the rat induces whole body oxidative stress: overall reducing antioxidant profile. J Neurotrauma 16:365–376

    Article  PubMed  CAS  Google Scholar 

  • Simola N, Di Chiara G, Daniels WMU, Schallert T, Morelli M (2009) Priming of rotational behavior by a dopamine receptor agonist in Hemiparkinsonian rats: movement-dependent induction. Neuroscience 158:1625–1631

    Article  PubMed  CAS  Google Scholar 

  • Skelton MR, Able JA, Grace CE, Herring R, Schaefer TL, Gudelsky GA, Vorhees CV, Williams MT (2008) (+/−)-3,4-Methylenedioxymethamphetamine treatment in adult rats impairs path integration learning: a comparison of single vs once per week treatment for 5 weeks. Neuropharmacology 55:1121–1130

    Article  PubMed  CAS  Google Scholar 

  • Smink BE, Movig KLL, Lusthof KJ, De Gier JJ, Uges DRA, Egberts ACG (2008) The relation between the use of psychoactive substances and the severity of the injury in a group of crash-involved drivers admitted to a regional trauma center. Traffic Inj Prev 9:105–108

    Article  PubMed  CAS  Google Scholar 

  • Sosnoff JJ, Broglio SP, Ferrara MS (2008) Cognitive and motor function are associated following mild traumatic brain injury. Exp Brain Res 187:563–571

    Article  PubMed  Google Scholar 

  • Sprague JE, Preston AS, Leifheit M, Woodside B (2003) Hippocampal serotonergic damage induced by MDMA (ecstasy): effects on spatial learning. Physiol Behav 79:281–287

    Article  PubMed  CAS  Google Scholar 

  • Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu GS, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69

    Article  PubMed  CAS  Google Scholar 

  • Tashlykov V, Katz Y, Gazit V, Zohar O, Schreiber S, Pick CG (2007) Apoptotic changes in the cortex and hippocampus following minimal brain trauma in mice. Brain Res 1130:197–205

    Article  PubMed  CAS  Google Scholar 

  • Tashlykov V, Katz Y, Volkov A, Gazit V, Schreiber S, Zohar O, Pick CG (2009) Minimal traumatic brain injury induce apoptotic cell death in mice. J Mol Neurosci 37:16–24

    Article  PubMed  CAS  Google Scholar 

  • Tweedie D, Milman A, Holloway HW, Li YZ, Harvey BK, Shen H, Pistell PJ, Lahiri DK, Hoffer BJ, Wang Y, Pick CG, Greig NH (2007) Apoptotic and behavioral sequelae of mild brain trauma in mice. J Neurosci Res 85:805–815

    Article  PubMed  CAS  Google Scholar 

  • Vos PE, Battistin L, Birbamer G, Gerstenbrand F, Potapov A, Prevec T, Stepan CA, Traubner P, Twijnstra A, Vecsei L, von Wild K (2002) EFNS guideline on mild traumatic brain injury: report of an EFNS task force. Eur J Neurol 9:207–219

    Article  PubMed  CAS  Google Scholar 

  • Wagner AK, Chen XB, Kline AE, Li YM, Zafonte RD, Dixon CE (2005a) Gender and environmental enrichment impact dopamine transporter expression after experimental traumatic brain injury. Exp Neurol 195:475–483

    Article  PubMed  CAS  Google Scholar 

  • Wagner AK, Sokoloski JE, Ren D, Chen X, Khan AS, Zafonte RD, Michael AC, Dixon CE (2005b) Controlled cortical impact injury affects dopaminergic transmission in the rat striatum. J Neurochem 95:457–465

    Article  PubMed  CAS  Google Scholar 

  • Wagner AK, Drewencki LL, Chen X, Santos FR, Khan AS, Harun R, Torres GE, Michael AC, Dixon CE (2009) Chronic methylphenidate treatment enhances striatal dopamine neurotransmission after experimental traumatic brain injury. J Neurochem 108:986–997

    Article  PubMed  CAS  Google Scholar 

  • Warren MW, Kobeissy FH, Liu MC, Svetlov SI, Hayes RL, Gold MS, Wang KKW (2006) Ecstasy toxicity: a comparison to methamphetamine and traumatic brain injury. J Addict Dis 25:115–123

    Article  PubMed  Google Scholar 

  • Warren MW, Larner SF, Kobeissy FH, Brezing CA, Jeung JA, Hayes RL, Gold MS, Wang KKW (2007) Calpain and caspase proteolytic markers co-localize with rat cortical neurons after exposure to methamphetamine and MDMA. Acta Neuropathol 114:277–286

    Article  PubMed  CAS  Google Scholar 

  • Weinbroum AA (2003) Importance of early identification of methylenedioxymethamphetamine (‘ecstasy’) ingestion in victims of motor vehicle accidents. Eur J Emerg Med 10:19–22

    Article  PubMed  Google Scholar 

  • Weizman R, Paz L, Peter Y, Pick CG (2001) Mice performance on the staircase test following acute ethanol administration. Pharmacol Biochem Behav 68:491–495

    Article  PubMed  CAS  Google Scholar 

  • Whishaw IQ, Tomie JA (1996) Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol Behav 60:1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Yan HQ, Li Y, Ma X, Marion DW, Dixon CE (2001) Traumatic brain injury (TBI) causes decreased expression of dopamine transporter protein in rat frontal cortex. Society for Neuroscience Abstracts 27:567

    Google Scholar 

  • Yan HQ, Kline AE, Ma XC, Li YM, Dixon CE (2002) Traumatic brain injury reduces dopamine transporter protein expression in the rat frontal cortex. NeuroReport 13:1899–1901

    Article  PubMed  CAS  Google Scholar 

  • Zohar O, Schreiber S, Getslev V, Schwartz JP, Mullins PG, Pick CG (2003) Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience 118:949–955

    Article  PubMed  CAS  Google Scholar 

  • Zohar O, Getslev V, Miller AL, Schreiber S, Pick CG (2006) Morphine protects for head trauma induced cognitive deficits in mice. Neurosci Lett 394:239–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported (in part) by a grant from the Dr. Herman Schauder Endownment Fund for Research and by a grant from The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel.

Role of funding source

None declared.

Contributors

Shahaf Edut and Chaim Pick designed the study and wrote the protocol, as well as designed the behavioral experiments and contributed to the interpretations of the results. Shahaf Edut managed the literature searches and analyses. Shahaf Edut and Vardit Rubovitch undertook the statistical analysis, and Shahaf Edut wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaim G. Pick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edut, S., Rubovitch, V., Schreiber, S. et al. The intriguing effects of ecstasy (MDMA) on cognitive function in mice subjected to a minimal traumatic brain injury (mTBI). Psychopharmacology 214, 877–889 (2011). https://doi.org/10.1007/s00213-010-2098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2098-y

Keywords

Navigation