Skip to main content

Advertisement

Log in

Minimal Traumatic Brain Injury Induce Apoptotic Cell Death in Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In the United States, 1.4 million people suffer from traumatic brain injury (TBI) each year because of traffic, sports, or war-related injuries. The majority of TBI victims suffer mild to minimal TBI (mTBI), but most are released undiagnosed. Detailed pathologies are poorly understood. We characterized the microscopic changes of neurons of closed-head mTBI mice after increased unilateral trauma using hematoxylin and eosin (H&E) stain, and correlated it with the expression of the apoptotic proteins c-jun, p53, and BCL-2. Minimal damage to the brain increases the number of pyknotic appearing neurons and activates the apoptotic proteins in both hemispheres. Although minimal, increased impact was positively correlated with the increased number of damaged neurons. These results may explain the wide variety of behavioral and cognitive deficits closed-head mTBI causes in mice. Our cumulative results point to the pathological origin of post-concussion syndrome and may aid in the development of future neuroprotective strategies for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

TBI:

traumatic brain injury

mTBI:

minimal traumatic brain injury

BBB:

blood–brain barrier

References

  • Albensi, B. C. (2001). Models of brain injury and alterations in synaptic plasticity. Journal of Neuroscience Research, 65, 279–283.

    Article  PubMed  CAS  Google Scholar 

  • Angel, P., Hattori, K., Smeal, T., & Karin, M. (1988). The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell, 55, 875–885.

    Article  PubMed  CAS  Google Scholar 

  • Berger, E., Leven, F., Pirente, N., Bouillon, B., & Neugebauer, E. (1999). Quality of life after traumatic brain injury; a systematic review of the literature. Restorative Neurology and Neuroscience, 14, 93–102.

    PubMed  Google Scholar 

  • Bogolepov, N. N., Popova, E. N., Koplik, E. V., Krivitskaya, G. N., & Sudakov, K. V. (2004). Structural-functional organization of neurons in the cerebral cortex of rats with different levels of resistance to emotional stress in conditions of exposure to delta sleep-inducing peptide. Neuroscience and Behavioral Physiology, 34, 611–616.

    Article  PubMed  CAS  Google Scholar 

  • Bonny, C., Borsello, T., & Zine, A. (2005). Targeting the JNK pathway as a therapeutic protective strategy for nervous system diseases. Reviews in the Neurosciences, 16, 57–67.

    PubMed  CAS  Google Scholar 

  • Brown, A. W., & Brierley, J. B. (1972). Anoxic-ischaemic cell change in rat brain light microscopic and fine-structural observations. Journal of the Neurological Sciences, 16, 59–84.

    Article  PubMed  CAS  Google Scholar 

  • Carbonell, W. S., & Grady, M. S. (1999). Regional and temporal characterization of neuronal, glial, and axonal response after traumatic brain injury in the mouse. Acta Neuropathologica (Berl), 98, 396–406.

    Article  CAS  Google Scholar 

  • Clark, R. S., Kochanek, P. M., Chen, M., Watkins, S. C., Marion, D. W., Chen, J., et al. (1999). Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB Journal, 13, 813–821.

    PubMed  CAS  Google Scholar 

  • Finset, A., Anke, A. W., Hofft, E., Roaldson, K. S., Pillgram- Larson, J., & Stanghelle, J. K. (1999). Cognitive performance in multiple trauma patients 3 years after injury. Psychosomatic Medicine, 61, 576–583.

    PubMed  CAS  Google Scholar 

  • Kibby, M. Y., & Long, C. J. (1996). Minor head injury, attempts at clarifying the confusion. Brain Injury, 10, 159–186.

    Article  PubMed  CAS  Google Scholar 

  • Laurer, H. L., & McIntosh, T. K. (1999). Experimental models of brain trauma. Current Opinion in Neurology, 12, 715–721.

    Article  PubMed  CAS  Google Scholar 

  • Levin, H. S., Mattis, S., Ruff, R. M., Eisenberg, H. M., Marshall, L. F., Tabaddor, K., et al. (1987). Neurobehavioral outcome following minor head injury, a three-center study. Journal of Neurosurgery, 66, 234–243.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., Moochhala, S., Kaur, C., & Ling, E. (2000). Changes in apoptosis-related protein (p53, Bax, Bcl-2 and Fos) expression with DNA fragmentation in the central nervous system in rats after closed head injury. Neuroscience Letters, 290, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Margulies, S. (2002). The postconcussion syndrome after mild head trauma, is brain damage over diagnosed? Part 1. Journal of Clinical Neuroscience, 7, 400–408.

    Article  Google Scholar 

  • Milman, A., Rosenberg, A., Weizman, R., & Pick, C. G. (2005). Mild traumatic brain injury induces persistent cognitive deficits and behavioral disturbances in mice. Journal of Neurotrauma, 22, 1003–1010.

    Article  PubMed  CAS  Google Scholar 

  • Milman, A., Zohar, O., Maayan, R., Weizman, R., & Pick, C. G. (2008). DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. European Neuropsychopharmacology, 18(3), 181–187.

    Article  PubMed  CAS  Google Scholar 

  • O’Dell, D. M., Raghupathi, R., Crino, P. B., Eberwine, J. H., & McIntosh, T. K. (2000). Traumatic brain injury alters the molecular fingerprint of TUNEL-positive cortical neurons In vivo, A single-cell analysis. Journal of Neuroscience, 20, 4821–4828.

    PubMed  CAS  Google Scholar 

  • Ooigawa, H., Nawashiro, H., Fukui, S., Otani, N., Osumi, A., Toyooka, T., et al. (2006). The fate of Nissl-stained dark neurons following traumatic brain injury in rats, difference between neocortex and hippocampus regarding survival rate. Acta Neuropathologica (Berl), 112, 471–481.

    Article  CAS  Google Scholar 

  • Ortega, S., Ittmann, M., Tsang, S. H., Ehrlich, M., & Basilico, C. (1998). Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proceedings of the National Academy of Sciences of the United States of America, 95, 5672–5677.

    Article  PubMed  CAS  Google Scholar 

  • Ottens, A. K., Kobeissy, F. H., Golden, E. C., Zhang, Z., Haskins, W. E., Chen, S. S., et al. (2006). Neuroproteomics in neurotrauma. Mass Spectrometry Reviews, 25, 380–408.

    Article  PubMed  CAS  Google Scholar 

  • Ozaki, T., Katsumoto, E., Mui, K., Furutsuka, D., & Yamagami, S. (1998). Distribution of Fos- and Jun-related proteins and activator protein-1 composite factors in mouse brain induced by neuroleptics. Neuroscience, 84, 1187–1196.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W., Kastin, A. J., Rigai, T., McLay, R., & Pick, C. G. (2003). Increased hippocampal uptake of tumor necrosis factor alpha and behavioral changes in mice. Experimental Brain Research, 149, 195–199.

    CAS  Google Scholar 

  • Polster, B. M., & Fiskum, G. (2004). Mitochondrial mechanisms of neural cell apoptosis. Journal of Neurochemistry, 90(6), 1281–1289.

    Article  PubMed  CAS  Google Scholar 

  • Rink, A., Fung, K. M., Trojanowski, J. Q., Lee, V. M., Neugebauer, E., & McIntosh, T. K. (1995). Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. American Journal of Pathology, 147, 1575–1583.

    PubMed  CAS  Google Scholar 

  • Runnerstam, M., Bao, F., Huang, Y., Shi, J., Gutierrez, E., Hamberger, A., et al. (2001). A new model for diffuse brain injury by rotational acceleration, II. Effects on extracellular glutamate, intracranial pressure, and neuronal apoptosis. Journal of Neurotrauma, 18, 259–273.

    Article  PubMed  CAS  Google Scholar 

  • Tashlykov, V., Katz, Y., Gazit, V., Zohar, O., Schreiber, S., & Pick, C. G. (2007). Apoptotic changes in the cortex and hippocampus following minimal brain trauma in mice. Brain Research, 1130, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Tweedie, D., Milman, A., Holloway, H. W., Li, Y., Harvey, B. K., Shen, H., et al. (2007). Apoptotic and behavioral sequelae of mild brain trauma in mice. Journal of Neuroscience Research, 85, 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Ward, N. L., & Hagg, T. (2000). SEK1/MKK4, c-Jun and NFKappaB are differentially activated in forebrain neurons during postnatal development and injury in both control and p75NGFR-deficient mice. European Journal of Neuroscience, 12, 1867–1881.

    Article  PubMed  CAS  Google Scholar 

  • Zohar, O., Getslev, V., Miller, A. L., Schreiber, S., & Pick, C. G. (2006). Morphine protects for head trauma induced cognitive deficits in mice. Neuroscience Letters, 394, 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Zohar, O., Schreiber, S., Getslev, V., Schwartz, J. P., Mullins, P. G., & Pick, C. G. (2003). Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience, 118, 949–955.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Pick.

Additional information

Ofer Zohar and Chaim G. Pick contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tashlykov, V., Katz, Y., Volkov, A. et al. Minimal Traumatic Brain Injury Induce Apoptotic Cell Death in Mice. J Mol Neurosci 37, 16–24 (2009). https://doi.org/10.1007/s12031-008-9094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9094-2

Keywords

Navigation