Skip to main content
Log in

Nicotine modulation of information processing is not limited to input (attention) but extends to output (intention)

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotine influences many cognitive processes, especially those requiring high attentional loads, yet the impact of nicotine on all aspects of information processing has not been well delineated.

Objective

The aim of the study was to determine the relative behavioral and functional effects of nicotine on dissociable aspects of information processing (i.e., selective attention and motor intention).

Methods

Adult smokers (N = 25) and healthy controls (N = 23) performed the intention/attention task (IAT) twice, during functional magnetic resonance imaging. The IAT assesses the relative differences in performance evoked by prime stimuli that provide information regarding either the correct hand with which to respond (i.e., intentional primes) or the likely location of a target stimulus (i.e., attentional primes). Smokers were scanned 2 h after nicotine (21 mg) or placebo patch placement. The order of nicotine and placebo sessions was randomized and counter-balanced. Controls were also scanned twice, with no patch placement in either session.

Results

While drug condition had no significant effect on reaction time, smokers were overall more accurate than controls. Moreover, nicotine significantly increased the response to intentional primes in brain regions known to mediate response readiness, e.g., inferior parietal lobe, supramarginal gyrus, and striatum.

Conclusions

While limited to participant accuracy, these data suggest that the behavioral effects of nicotine in smokers are not only limited to information processing input (i.e., selective attention) but are also generalizable to output functions (i.e., motor intention). Moreover, nicotine’s effects on intention appear to be mediated by a facilitation of function in brain regions associated with information processing output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In interpreting these observations, it is important to note that the effects of acute nicotine and nicotine withdrawal upon measures of cognition are not necessarily of equal magnitude, and the impact of acute nicotine in smokers may differ considerably from the effects seen in nonsmoking controls.

  2. Given the ratio of congruent to incongruent trials and the number of other task manipulations, there were insufficient incongruent trials to allow for this level to be accurately modeled in the imaging analysis.

References

  • Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nat Neurosci 7:542–548

    Article  PubMed  CAS  Google Scholar 

  • Bell SL, Taylor RC, Singleton EG, Henningfield JE, Heishman SJ (1999) Smoking after nicotine deprivation enhances cognitive performance and decreases tobacco craving in drug abusers. Nicotine Tob Res 1:45–52

    Article  PubMed  CAS  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Stat Methodol 26:211–252

    Google Scholar 

  • Broadbent DE (1970) Stimulus set and response set: two kinds of selective attention. In: Mostofsky DI (ed) Attention: contemporary theory and analysis. Appleton, New York

    Google Scholar 

  • Broadbent DE (1971) Decsion and stress. Academic, London

    Google Scholar 

  • Clementi F, Fornasari D, Gotti C (2000) Neuronal nicotinic acetylcholine receptors: from structure to therapeutics. Trends Pharmacol Sci 21:35–37

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435

    PubMed  CAS  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  PubMed  CAS  Google Scholar 

  • Craighero L, Carta A, Fadiga L (2001) Peripheral oculomotor palsy affects orienting of visuospatial attention. NeuroReport 12:3283–3286

    Article  PubMed  CAS  Google Scholar 

  • Craighero L, Nascimben M, Fadiga L (2004) Eye position affects orienting of visuospatial attention. Curr Biol 14:331–333

    PubMed  CAS  Google Scholar 

  • Davranche K, Audiffren M (2002) Effects of a low dose of transdermal nicotine on information processing. Nicotine Tob Res 4:275–285

    Article  PubMed  CAS  Google Scholar 

  • Della Casa V, Hofer I, Weiner I, Feldon J (1998) The effects of smoking on acoustic prepulse inhibition in healthy men and women. Psychopharmacology (Berl) 137:362–368

    Article  Google Scholar 

  • Della Casa V, Hofer I, Weiner I, Feldon J (1999) Effects of smoking status and schizotypy on latent inhibition. J Psychopharmacol 13:45–57

    Article  PubMed  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837

    Article  PubMed  CAS  Google Scholar 

  • Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15:95–111

    Article  PubMed  Google Scholar 

  • Diekhof EK, Falkai P, Gruber O (2008) Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain Res Rev 59:164–184

    Article  PubMed  Google Scholar 

  • Domier CP, Monterosso JR, Brody AL, Simon SL, Mendrek A, Olmstead R, Jarvik ME, Cohen MS, London ED (2007) Effects of cigarette smoking and abstinence on stroop task performance. Psychopharmacology 195:1–9

    Article  PubMed  CAS  Google Scholar 

  • Duncan E, Madonick S, Chakravorty S, Parwani A, Szilagyi S, Efferen T, Gonzenbach S, Angrist B, Rotrosen J (2001) Effects of smoking on acoustic startle and prepulse inhibition in humans. Psychopharmacology (Berl) 156:266–272

    Article  CAS  Google Scholar 

  • Ernst M, Heishman SJ, Spurgeon L, London ED (2001) Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology 25:313–319

    Article  PubMed  CAS  Google Scholar 

  • Eschen A, Freeman J, Dietrich T, Martin M, Ellis J, Martin E, Kliegel M (2007) Motor brain regions are involved in the encoding of delayed intentions: a fMRI study. Int J Psychophysiol 64:259–268

    Article  PubMed  Google Scholar 

  • Foulds J, Stapleton J, Swettenham J, Bell N, McSorley K, Russell MA (1996) Cognitive performance effects of subcutaneous nicotine in smokers and never-smokers. Psychopharmacology (Berl) 127:31–38

    Article  CAS  Google Scholar 

  • Fu SM, Greenwood PM, Parasuraman R (2005) Brain mechanisms of involuntary visuospatial attention: an event-related potential study. Hum Brain Mapp 25:378–390

    Article  PubMed  Google Scholar 

  • Garg A, Schwartz D, Stevens AA (2007) Orienting auditory spatial attention engages frontal eye fields and medial occipital cortex in congenitally blind humans. Neuropsychologia 45:2307–2321

    Article  PubMed  Google Scholar 

  • Ghatan PH, Ingvar M, Eriksson L, Stone-Elander S, Serrander M, Ekberg K, Wahren J (1998) Cerebral effects of nicotine during cognition in smokers and non-smokers. Psychopharmacology 136:179–189

    Article  PubMed  CAS  Google Scholar 

  • Gross TM, Jarvik ME, Rosenblatt MR (1993) Nicotine abstinence produces content-specific stroop interference. Psychopharmacology (Berl) 110:333–336

    Article  CAS  Google Scholar 

  • Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom test for nicotine dependence—a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 86:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Heishman SJ, Taylor RC, Henningfield JE (1994) Nicotine and smoking: a review of effects on human performance. [Article]. Exp Clin Psychopharmacol 2:345–395

    Article  CAS  Google Scholar 

  • Heishman SJ, Henningfield JE, Singleton EG (2002) Tobacco, nicotine, and human cognition. Nicotine Tob Res 4:3–4

    Article  PubMed  Google Scholar 

  • Heishman SJ, Singleton EG, Moolchan ET (2003) Tobacco craving questionnaire: reliability and validity of a new multifactorial instrument. Nicotine Tob Res 5:645–654

    Article  PubMed  Google Scholar 

  • Heishman SJ, Singleton EG, Pickworth WB (2007) Reliability and validity of a short form of the Tobacco Craving Questionnaire. Nicotine Tob Res 10:643–651

    Article  Google Scholar 

  • Hendricks PS, Ditre JW, Drobes DJ, Brandon TJ (2006) The early time course of smoking withdrawal effects. Psychopharmacology V187:385–396

    Article  CAS  Google Scholar 

  • Hesse MD, Thiel CM, Stephan KE, Fink GR (2006) The left parietal cortex and motor intention: an event-related functional magnetic resonance imaging study. Neuroscience 140:1209–1221

    Article  PubMed  CAS  Google Scholar 

  • Kumari V, Gray JA (1999) Smoking withdrawal, nicotine dependence and prepulse inhibition of the acoustic startle reflex. Psychopharmacology (Berl) 141:11–15

    Article  CAS  Google Scholar 

  • Kumari V, Checkley SA, Gray JA (1996) Effect of cigarette smoking on prepulse inhibition of the acoustic startle reflex in healthy male smokers. Psychopharmacology (Berl) 128:54–60

    Article  CAS  Google Scholar 

  • Kustov AA, Robinson DL (1996) Shared neural control of attentional shifts and eye movements. Nature 384:74–77

    Article  PubMed  CAS  Google Scholar 

  • Lau HC, Rogers RD, Haggard P, Passingham RE (2004) Attention to intention. Science 303:1208–1210

    Article  PubMed  CAS  Google Scholar 

  • Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36:539–548

    Article  PubMed  CAS  Google Scholar 

  • Le Houezec J, Halliday R, Benowitz NL, Callaway E, Naylor H, Herzig K (1994) A low dose of subcutaneous nicotine improves information processing in non-smokers. Psychopharmacology (Berl) 114:628–634

    Article  Google Scholar 

  • Levin ED, Rezvani AH (2000) Development of nicotinic drug therapy for cognitive disorders. Eur J Pharmacol 393:141–146

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Conners CK, Silva D, Hinton SC, Meck WH, March J, Rose JE (1998) Transdermal nicotine effects on attention. Psychopharmacology (Berl) 140:135–141

    Article  CAS  Google Scholar 

  • Levin E, McClernon F, Rezvani A (2006) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology 184:523–539

    Article  PubMed  CAS  Google Scholar 

  • Macaluso E, Eimer M, Frith CD, Driver J (2003) Preparatory states in crossmodal spatial attention: spatial specificity and possible control mechanisms. Exp Brain Res 149:62–74

    PubMed  CAS  Google Scholar 

  • Mancuso G, Warburton DM, Melen M, Sherwood N, Tirelli E (1999) Selective effects of nicotine on attentional processes. Psychopharmacology (Berl) 146:199–204

    Article  CAS  Google Scholar 

  • Mangun GR, Hopfinger JB, Kussmaul CL, Fletcher EM, Heinze HJ (1997) Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex. Hum Brain Mapp 5:273–279

    Article  Google Scholar 

  • Mendrek A, Monterosso J, Simon SL, Jarvik M, Brody A, Olmstead R, Domier CP, Cohen MS, Ernst M, London ED (2006) Working memory in cigarette smokers: comparison to non-smokers and effects of abstinence. Addict Behav 31:833–844

    Article  PubMed  Google Scholar 

  • Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Fallah M (2001) Control of eye movements and spatial attention. Proc Natl Acad Sci USA 98:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 4:36–46

    Article  PubMed  CAS  Google Scholar 

  • Nobre AC, Gitelman DR, Dias EC, Mesulam MM (2000) Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage 11:210–216

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychology 9:97–113

    Article  CAS  Google Scholar 

  • Parrott AC, Craig D (1992) Cigarette smoking and nicotine gum (0, 2 and 4 mg): effects upon four visual attention tasks. Neuropsychobiology 25:34–43

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC, Garnham NJ, Wesnes K, Pincock C (1996) Cigarette smoking and abstinence: comparative effects upon cognitive task performance and mood state over 24 hours. Hum Psychopharmacol Clin Exp 11:391–400

    Article  Google Scholar 

  • Petrie RX, Deary IJ (1989) Smoking and human information processing. Psychopharmacology (Berl) 99:393–396

    Article  CAS  Google Scholar 

  • Powell J, Tait S, Lessiter J (2002) Cigarette smoking and attention to signals of reward and threat in the Stroop paradigm. Addiction 97:1163–1170

    Article  PubMed  Google Scholar 

  • Quian QR, Snyder LH, Batista AP, Cui H, Andersen RA (2006) Movement intention is better predicted than attention in the posterior parietal cortex. J Neurosci 26:3615–3620

    Article  CAS  Google Scholar 

  • Raz A, Buhle J (2006) Typologies of attentional networks. Nat Rev Neurosci 7:367–379

    Article  PubMed  CAS  Google Scholar 

  • Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (1998) Spatial attention: mechanisms and theories. In: Sabourin M, Craik F, Roberts AC (eds) Advances in psychological sciences: vol 2. Biological and cognitive aspects. Psychology, East Sussex, pp 171–198

    Google Scholar 

  • Rose JE, Behm FM, Westman EC, Mathew RJ, London ED, Hawk TC, Turkington TG, Coleman RE (2003) PET studies of the influences of nicotine on neural systems in cigarette smokers. Am J Psychiatry 160:323–333

    Article  PubMed  Google Scholar 

  • Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R, Driver J (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MFS, Taylor PCJ (2006) TMS in the parietal cortex: updating representations for attention and action. Neuropsychologia 44:2700–2716

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MFS, Nixon PD, Renowden S, Wade DT, Passingham RE (1997) The left parietal cortex and motor attention. Neuropsychologia 35:1261–1273

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MFS, Ellison A, Walsh V (2001a) Complementary localization and lateralization of orienting and motor attention. Nat Neurosci 4:656–661

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MFS, Krams M, Passingham RE (2001b) The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J Cogn Neurosci 13:698–710

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MFS, Johansen-Berg H, Gobel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20:S89–S100

    Article  PubMed  Google Scholar 

  • Rusted JM, Caulfield D, King L, Goode A (2000) Moving out of the laboratory: does nicotine improve everyday attention? Behav Pharmacol 11:621–629

    PubMed  CAS  Google Scholar 

  • Sacco KA, Bannon KL, George TP (2004) Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. J Psychopharmacol 18:457–474

    Article  PubMed  CAS  Google Scholar 

  • Sheliga BM, Riggio L, Rizzolatti G (1995) Spatial attention and eye-movements. Exp Brain Res 105:261–275

    Article  PubMed  CAS  Google Scholar 

  • Simon JR (1969) Reactions toward the source of stimulation. J Exp Psychol 81:174–176

    Article  PubMed  CAS  Google Scholar 

  • Simon JR, Rudell AP (1967) Auditory S-R compatibility: the effect of an irrelevant cue on information processing. J Appl Psychol 51:300–304

    Article  PubMed  CAS  Google Scholar 

  • Simon JR, Small AM Jr (1969) Processing auditory information: interference from an irrelevant cue. J Appl Psychol 53:433–435

    Article  PubMed  CAS  Google Scholar 

  • Snyder FR, Davis FC, Henningfield JE (1989) The tobacco withdrawal syndrome: performance decrements assessed on a computerized test battery. Drug Alcohol Depend 23:259–266

    Article  PubMed  CAS  Google Scholar 

  • Stapleton JM, Gilson SF, Wong DF, Villemagne VL, Dannals RF, Grayson RF, Henningfield JE, London ED (2003) Intravenous nicotine reduces cerebral glucose metabolism: a preliminary study. Neuropsychopharmacology 28:765–772

    Article  PubMed  CAS  Google Scholar 

  • Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, Hawkins M, Rao SM, Bandettini PA, Bloom AS (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155:1009–1015

    PubMed  CAS  Google Scholar 

  • Stolerman IP, Mirza NR, Shoaib M (1995) Nicotine psychoparmacology: addiction, cognition and neuroadaptation. Med Res Rev 15:47–72

    Article  PubMed  CAS  Google Scholar 

  • Swan GE, Lessov-Schlaggar CN (2007) The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev 17:259–273

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Thoenissen D, Zilles K, Toni I (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 22:9024–9034

    PubMed  CAS  Google Scholar 

  • Toni I, Thoenissen D, Zilles K (2001) Movement preparation and motor intention. Neuroimage 14:S110–S117

    Article  PubMed  CAS  Google Scholar 

  • Verfaellie M, Heilman KM (1990) Hemispheric asymmetries in attentional control—implications for hand preference in sensorimotor tasks. Brain Cogn 14:70–80

    Article  PubMed  CAS  Google Scholar 

  • Verfaellie M, Bowers D, Heilman KM (1988a) Hemispheric asymmetries in mediating intention, but not selective attention. Neuropsychologia 26:521–531

    Article  PubMed  CAS  Google Scholar 

  • Verfaellie M, Bowers D, Heilman KM (1988b) Attentional factors in the occurrence of stimulus-response compatibility effects. Neuropsychologia 26:435–444

    Article  PubMed  CAS  Google Scholar 

  • Warburton DM, Rusted JM (1993) Cholinergic control of cognitive resources. Neuropsychobiology 28:43–46

    Article  PubMed  CAS  Google Scholar 

  • Wechsler D (2007) Wechsler Abbreviated Scale of Intelligence (WASI). PsychCorp, San Antonio

    Google Scholar 

  • Xu J, Mendrek A, Cohen MS, Monterosso J, Rodriguez P, Simon SL, Brody A, Jarvik M, Domier CP, Olmstead R, Ernst M, London ED (2005) Brain activity in cigarette smokers performing a working memory task: effect of smoking abstinence. Biol Psychiatry 58:143–150

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Mendrek A, Cohen MS, Monterosso J, Simon S, Brody AL, Jarvik M, Rodriguez P, Ernst M, London ED (2006) Effects of acute smoking on brain activity vary with abstinence in smokers performing the N-Back task: a preliminary study. Psychiatry Res 148:103–109

    Article  PubMed  Google Scholar 

  • Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 22:8785–8789

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Loretta Spurgeon, Kimberley Modo, NIDA nursing staff, and Dr. Betty Jo Salmeron for their contributions in running this study and Dr. Frank Wolkenberg for experiment design assistance. This study was supported by the National Institute on Drug Abuse—Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot A. Stein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 6.09 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, E.J., Ross, T.J., Kurup, P.K. et al. Nicotine modulation of information processing is not limited to input (attention) but extends to output (intention). Psychopharmacology 209, 291–302 (2010). https://doi.org/10.1007/s00213-010-1788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1788-9

Keywords

Navigation