Skip to main content
Log in

Impairment of specific episodic memory processes by sub-psychotic doses of ketamine: the effects of levels of processing at encoding and of the subsequent retrieval task

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The precise nature of the impact of the N-methyl-d-aspartate antagonist, ketamine, upon human episodic memory, has yet to be elucidated fully.

Objectives

This study sought to assess the effects of ketamine on the sub-processes facilitating memory encoding and retrieval.

Methods

We evaluated the effects of the drug on a series of memory performance measures depending upon whether it was administered at the encoding or retrieval stage and on the nature of the encoding task used. Twelve healthy volunteers participated in a double-blind, placebo-controlled, randomized, within-subjects study. Intravenous infusions of placebo, 50 ng/ml ketamine or 100 ng/ml ketamine were administered. We investigated the effects of ketamine on three key aspects of episodic memory: encoding vs retrieval processes, source memory, and depth of processing. Data were analysed using both multinomial modelling and standard measures of item discrimination and response bias.

Results

Deleterious effects of ketamine on episodic memory were primarily attributable to its effects on encoding, rather than retrieval processes. Recognition memory was impaired for items encoded at an intermediate level of processing, but preserved for shallowly and deeply encoded items. Increased source guessing bias was also observed when encoding took place under ketamine.

Conclusions

The effects of ketamine upon episodic memory seem, therefore, to predominate at encoding. Furthermore, our results are also consistent with a specific impairment of encoding processes that result in subsequent recollective, as opposed to familiarity-based, retrieval. The observed effects are compatible with memory deficits seen in schizophrenia and thus provide some support for the ketamine model of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler CM, Goldberg TE, Malhotra AK, Pickar D, Breier A (1998) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry 43:811–816

    Article  PubMed  CAS  Google Scholar 

  • Aleman A, Hijman R, de Haan EH, Kahn RS (1999) Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry 156(9):1358–1366

    PubMed  CAS  Google Scholar 

  • Batchelder WH, Riefer DM (1990) Multinomial processing models of source monitoring. Psychol Rev 97(4):548–564

    Article  Google Scholar 

  • Batchelder WH, Chosak-Reiter J, Shankle WR, Dick MB (1997) A multinomial modeling analysis of memory deficits in Alzheimer's disease and vascular dementia. J Gerontol B Psychol Sci Soc Sci 52(5):206–215

    Google Scholar 

  • Bayen UJ, Murnane K, Erdfelder E (1996) Source discrimination, item detection, and multinomial models of source monitoring. J Exp Psychol Learn Mem Cogn 22(1):197–215

    Article  Google Scholar 

  • Brebion G, Amador X, Smith MJ, Gorman JM (1997) Mechanisms underlying memory impairment in schizophrenia. Psychol Med 27(2):383–393

    Article  PubMed  CAS  Google Scholar 

  • Brebion G, Amador X, Smith MJ, Malaspina D, Sharif Z, Gorman JM (1999) Opposite links of positive and negative symptomatology with memory errors in schizophrenia. Psychiatry Res 88(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • Brebion G, Amador X, David A, Malaspina D, Sharif Z, Gorman JM (2000) Positive symptomatology and source-monitoring failure in schizophrenia–an analysis of symptom-specific effects. Psychiatry Res 95(2):119–131

    Article  PubMed  CAS  Google Scholar 

  • Brebion G, Gorman J, Amador X, Malaspina D, Sharif Z (2002) Source monitoring impairments in schizophrenia: characterisation and associations with positive and negative symptomatology. Psychiatry Res 112(1):27

    Article  PubMed  Google Scholar 

  • Calev A (1984a) Recall and recognition in chronic nondemented schizophrenics: use of matched tasks. J Abnorm Psychol 93(2):172–177

    Article  PubMed  CAS  Google Scholar 

  • Calev A (1984b) Recall and recognition in mildly disturbed schizophrenics: the use of matched tasks. Psychol Med 14(2):425–429

    Article  PubMed  CAS  Google Scholar 

  • Calev A, Venables PH, Monk AF (1983) Evidence for distinct verbal memory pathologies in severely and mildly disturbed schizophrenics. Schizophr Bull 9(2):247–264

    PubMed  CAS  Google Scholar 

  • Cansino S, Maquet P, Dolan RJ, Rugg MD (2002) Brain activity underlying encoding and retrieval of source memory. Cereb Cortex 12(10):1048–1056

    Article  PubMed  Google Scholar 

  • Chan AS, Kwok IC, Chiu H, Lam L, Pang A, Chow LY (2000) Memory and organizational strategies in chronic and acute schizophrenic patients. Schizophr Res 41(3):431–445

    Article  PubMed  CAS  Google Scholar 

  • Corwin J (1994) On measuring discrimination and response bias: unequal numbers of targets and distractors and two classes of distractors. Neuropsychology 1:110–117

    Article  Google Scholar 

  • Craik FIM, Lockhart RS (1972) Levels of processing: a framework for memory research. J Verbal Learn Verbal Behav 11:671–684

    Article  Google Scholar 

  • Danion JM, Rizzo L, Bruant A (1999) Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia. Arch Gen Psychiatry 56(7):639–644

    Article  PubMed  CAS  Google Scholar 

  • Dobbins IG, Foley H, Schacter DL, Wagner AD (2002) Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron 35(5):989–996

    Article  PubMed  CAS  Google Scholar 

  • Dodson CS, Prinzmetal W, Shimamura AP (1998) Using excel to estimate parameters from observed data: an example from source memory data. Behav Res Methods Instrum Comput 30(3):517–526

    Google Scholar 

  • Domino EF, Zsigmond EK, Domino LE, Domino KE, Kothary SP, Domino SE (1982) Plasma levels of ketamine and two of its metabolites in surgical patients using a gas chromatographic mass fragmentographic assay. Anesth Analg 61(2):87–92

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PC, Henson RN (2001) Frontal lobes and human memory: insights from functional neuroimaging. Brain 124(Pt 5):849–881

    Article  PubMed  CAS  Google Scholar 

  • Francis WN, Kucera H (1982) Frequency analysis of English usage: lexicon and grammar. Houghton Mifflin, Boston

    Google Scholar 

  • Frith C (1992) The cognitive neuropsychology of schizophrenia. Erlbaum, Hove

    Google Scholar 

  • Frith CD, Done DJ (1988) Towards a neuropsychology of schizophrenia. Br J Psychiatry 153:437–443

    PubMed  CAS  Google Scholar 

  • Ghoneim MM, Hinrichs JV, Mewaldt SP, Petersen RC (1985) Ketamine: behavioral effects of subanesthetic doses. J Clin Psychopharmacol 5(2):70–77

    Article  PubMed  CAS  Google Scholar 

  • Gold JM, Randolph C, Carpenter CJ, Goldberg TE, Weinberger DR (1992) Forms of memory failure in schizophrenia. J Abnorm Psychol 101(3):487–494

    Article  PubMed  CAS  Google Scholar 

  • Harris JA, Biersner RJ, Edwards D, Bailey LW (1975) Attention, learning, and personality during ketamine emergence: a pilot study. Anesth Analg 54(2):169–172

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ et al (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1(4):318–323

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12(3):426–445

    Article  PubMed  CAS  Google Scholar 

  • Henson RN, Rugg MD, Shallice T, Josephs O, Dolan RJ (1999) Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J Neurosci 19(10):3962–3972

    PubMed  CAS  Google Scholar 

  • Hetem LA, Danion JM, Diemunsch P, Brandt C (2000) Effect of a subanesthetic dose of ketamine on memory and conscious awareness in healthy volunteers. Psychopharmacology (Berl) 152(3):283–288

    Article  CAS  Google Scholar 

  • Honey RAE, Turner DC, Honey GD, Sharar SR, Kumaran D, Pomarol-Clotet E, McKenna PJ, Sahakian BJ, Robbins TW, Fletcher PC (2003) Subdissociative dose ketamine produces a deficit in manipulation but not maintenance of the contents of working memory. Neuropsychopharmacology 28:2037–2044

    PubMed  CAS  Google Scholar 

  • Jacoby LL (1991) A process dissociation framework: separating automatic from intentional uses of memory. J Mem Lang 30:513–541

    Article  Google Scholar 

  • Johnson MK, Raye CL (1981) Reality monitoring. Psychol Rev 88:67–85

    Article  Google Scholar 

  • Keefe RS, Arnold MC, Bayen UJ, Harvey PD (1999) Source monitoring deficits in patients with schizophrenia; a multinomial modelling analysis. Psychol Med 29(4):903–914

    Article  PubMed  CAS  Google Scholar 

  • Keefe RSE, Arnold MC, Bayen UJ, McEvoy JP, Wilson WH (2002) Source-monitoring deficits for self-generated stimuli in schizophrenia: multinomial modeling of data from three sources. Schizophr Res 57(1):51–67

    Article  PubMed  Google Scholar 

  • Kharasch ED, Labroo R (1992) Metabolism of ketamine stereoisomers by human liver microsomes. Anesthesiology 77(6):1201–1207

    PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51(3):199–214

    PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D et al (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14(5):301–307

    Article  PubMed  CAS  Google Scholar 

  • McClain L (1983) Encoding and retrieval in schizophrenics' free recall. J Nerv Ment Dis 171(8):471–479

    Article  PubMed  CAS  Google Scholar 

  • McKenna PJ, Tamlyn D, Lund CE, Mortimer AM, Hammond S, Baddeley AD (1990) Amnesic syndrome in schizophrenia. Psychol Med 20(4):967–972

    PubMed  CAS  Google Scholar 

  • Moritz S, Woodward TS, Ruff CC (2003) Source monitoring and memory confidence in schizophrenia. Psychol Med 33:131–139

    Article  PubMed  CAS  Google Scholar 

  • Morgan CJA, Mofeez A, Brandner B, Bromley L, Curran HV (2004) Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropychopharmacology 29:208–218

    Article  CAS  Google Scholar 

  • Morrison AP, Haddock G (1997) Cognitive factors in source monitoring and auditory hallucinations. Psychol Med 27(3):669–679

    Article  PubMed  CAS  Google Scholar 

  • Nelson H (1982) National adult reading test. NFER-Nelson, London

    Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T et al (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20(2):106–118

    Article  PubMed  CAS  Google Scholar 

  • Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 260(3):1209–1213

    PubMed  CAS  Google Scholar 

  • Radant AD, Bowdle TA, Cowley DS, Kharasch ED, Roy-Byrne PP (1998) Does ketamine-mediated N-methyl-d-aspartate receptor antagonism cause schizophrenia-like oculomotor abnormalities? Neuropsychopharmacology 19(5):434–444

    Article  PubMed  CAS  Google Scholar 

  • Riefer DM, Batchelder WH (1988) Multinomial modeling and the measurement of cognitive-processes. Psychol Rev 95(3):318–339

    Article  Google Scholar 

  • Rugg MD, Fletcher PC, Chua PM, Dolan RJ (1999) The role of the prefrontal cortex in recognition memory and memory for source: an fMRI study. NeuroImage 10(5):520–529

    Article  PubMed  CAS  Google Scholar 

  • Simons JS, Verfaellie M, Galton CJ, Miller BL, Hodges JR, Graham KS (2002) Recollection-based memory in frontotemporal dementia: implications for theories of long-term memory. Brain 125:2523–2536

    Article  PubMed  Google Scholar 

  • Stirling JD, Hellewell JS, Hewitt J (1997) Verbal memory impairment in schizophrenia: no sparing of short-term recall. Schizophr Res 25(2):85–95

    Article  PubMed  CAS  Google Scholar 

  • Tamlyn D, McKenna PJ, Mortimer AM, Lund CE, Hammond S, Baddeley AD (1992) Memory impairment in schizophrenia: its extent, affiliations and neuropsychological character. Psychol Med 22(1):101–115

    PubMed  CAS  Google Scholar 

  • Vinogradov S, Willis-Shore J, Poole JH, Marten E, Ober BA, Shenaut GK (1997) Clinical and neurocognitive aspects of source monitoring errors in schizophrenia. Am J Psychiatry 154(11):1530–1537

    PubMed  CAS  Google Scholar 

  • Wing J, Cooper J, Sartorius N (1974) The measurement and classification of psychiatric symptoms. Cambridge University Press, Cambridge

    Google Scholar 

  • Yonelinas AP (1994) Receiver-operating characteristics in recognition memory: evidence for a dual-process model. J Exp Psychol Learn Mem Cogn 20(6):1341–1354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by a Wellcome Trust grant awarded to P.C.F. G.D.H. and R.A.E.H. were also supported by the Wellcome Trust; J.S.S. was supported by Wellcome Trust grant 061171. We would like to thank Trevor Robbins, Barbara Sahakian and Peter McKenna for their helpful contributions, the staff of the Wellcome Trust Clinical Research Facility, Addenbrooke's Hospital for clinical support, and also the participants involved in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Fletcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honey, G.D., Honey, R.A.E., Sharar, S.R. et al. Impairment of specific episodic memory processes by sub-psychotic doses of ketamine: the effects of levels of processing at encoding and of the subsequent retrieval task. Psychopharmacology 181, 445–457 (2005). https://doi.org/10.1007/s00213-005-0001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0001-z

Keywords

Navigation