Skip to main content
Log in

MDMA produces stimulant-like conditioned locomotor activity

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Daily administration of a drug in a distinctive environment establishes contingencies that support Pavlovian conditioning. Environmental cues that are paired with the drug injection and that predict the onset of drug action can become conditioned stimuli. Ultimately, the conditioned stimuli come to predict the availability of drug and develop the potential to engender conditioned drug responses. Various psychostimulant drugs can produce conditioned locotnotion when tested in the presence of environmental cues that were repeatedly associated with the drug experience. The ability of amphetamine and cocaine to produce conditioned locomotion was demonstrated in the present study. Stimulant-like properties of methylenedioxymethamphetamine (MDMA) have been reported in locomotor paradigms, drug discrimination procedures, and human subjective questionnaires. MDMA (5 mg/kg), paired for 5 days to a distinct environment signalled by the presence of a distinct odor, produced enhanced locomotion during a test probe with the odor alone indicating that MDMA can also produce conditioned locomotion. The observation that the stimulus properties of MDMA can also become associated with environmental cues supports the hypothesis that some of the behavioral effects of MDMA resemble those of other classical psychostimulants such as amphetamine and cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes D (1988) New data intensify the agony over Ecstasy. Science 239:864–866

    Google Scholar 

  • Beardsley P, Balster R, Harris L (1986) Self-administration of methylenedioxymethamphetamine (MDMA) by Rhesus monkeys. Drug Alcohol Depend 18:149–157

    Google Scholar 

  • Beck J, Morgan P (1986) Designer drug confusion: a focus on MDMA. J Drug Educ 16:287–302

    Google Scholar 

  • Beninger RJ, Hahn B (1983) Pimozide blocks establishment but not expression of amphetamine-produced environment-specific conditioning. Science 220:1304–1306

    Google Scholar 

  • Borberg S (1974) Conditioning of amphetamine-induced behavior in the albino rat. Psychopharmacology 34:191–198

    Google Scholar 

  • Braun U, Shulgin A, Braun G (1980) Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J Pharm Sci 69:192–195

    Google Scholar 

  • Bridger WH, Schiff SR, Cooper SS, Paredes W, Barr GA (1982) Classical conditioning of cocaine's stimulatory effects. Psychopharmacol Bull 18:210–214

    Google Scholar 

  • Childress AR, McLellan AT, Ehrman R, O'Brien CP (1988) Classically conditioned responses in opioid and cocaine dependence: a role in relapse. In: Ray BA (ed) Learning factors in substance abuse, NIDA Research Monograph 84, pp 25–43

  • Gawin FH, Kleber HD (1986) Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Arch Gen Psychiatry 43:107–113

    Google Scholar 

  • Glennon RA, Young R (1984) Further investigation of the discriminative stimulus properties of MDA. Pharmacol Biochem Behav 20:501–505

    Google Scholar 

  • Gold LH, Koob GF (1988) Methysergide potentiates the hyperactivity produced by MDMA in rats. Pharmacol Biochem Behav 29:645–648

    Google Scholar 

  • Gold LH, Koob GF, Geyer MA (1988a) Stimulant and hallucinogenic behavioral profiles of 3,4-methylenedioxymethamphetamine (MDMA) and N-ethyl-3,4-methylenedioxyamphetamine (MDE) in rats. J Pharmacol Exp Ther 247:547–555

    Google Scholar 

  • Gold LH, Swerdlow NR, Koob GF (1988b) The role of mesolimbic dopamine in conditioned locomotion produced by amphetamine. Behav Neurosci 102:544–552

    Google Scholar 

  • Gold LH, Koob GF, Geyer MA (1988c) Multivariate analysis of amphetamine (amph) conditioned locomotion. Soc Neurosci Abstr 14:221

    Google Scholar 

  • Grinspoon L, Bakalar J (1986) Can drugs be used to enhance the psychotherapeutic process? Am J Psychother XL:393–404

    Google Scholar 

  • Hinson RE, Poulos CX (1981) Sensitization to the behavioral effects of cocaine: modification by Pavlovian conditioning. Pharmacol Biochem Behav 15:559–562

    Google Scholar 

  • Hubner CB, Bird M, Rassnick S, Kornetsky C (1988) The threshold lowering effects of MDMA (ecstasy) on brain-stimulation reward. Psychopharmacology 95:49–51

    Google Scholar 

  • Johnson MP, Hoffman AJ, Nichols DE (1986) Effects of the enantioners of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur J Pharmacol 132:269–276

    Google Scholar 

  • Kling JW (1971) Learning. Introductory Survey. In: Kling JW, Riggs LA (eds) Experimental psychology. Holt, Rhinehart and Winston, New York, pp 551–613

    Google Scholar 

  • Lamb R, Griffiths R (1987) Self-injection of d, 1-3,4-methylenedioxymethamphetamine (MDMA) in the baboon. Psychopharmacology 91:268–272

    Google Scholar 

  • Mansbach RS, Braff DL, Geyer MA (1989) Prepulse inhibition of the acoustic startle response is disrupted by N-ethyl-3,4-methylenedioxyamphetamine (MDEA) in the rat. Eur J Pharmacol (in press)

  • Meyer RE (1988) Conditioning phenomena and the problem of relapse in opioid addicts and alcoholics. In: Ray BA (ed) Learning factors in substance abuse. NIDA Research Monograph 84, pp 161–179

  • Mokler DJ, Robinson SE, Rosecrans JA (1987) (±)3,4-Methylene-dioxymethamphetamine (MDMA) produces long-term reductions in brain 5-hydroxytryptamine in rats. Eur J Pharmacol 138:265–268

    Google Scholar 

  • Mucha RF, van der Kooy D, O'Schaughnessy M, Bucenieks P (1982) Drug reinforcement studied by the use of place conditioning in rat. Brain Res 243:91–105

    Google Scholar 

  • Nichols DE (1986) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs 18:305–313

    Google Scholar 

  • Oberlender R, Nichols DE (1988) Drug discrimination studies with MDMA and amphetamine. Psychopharmacology 95:71–76

    Google Scholar 

  • O'Brien CP, Testa T, O'Brien TJ, Greenstein R (1976) Conditioning in human opiate addicts. Pavlov J Biol Sci 11:195–202

    Google Scholar 

  • Paulus MP, Geyer MA, Gold LH, Mandell AJ (1988) Assessing complexity of rat locomotor behavior using invariant measures from ergodic theory. Soc Neurosci Abstr 14:221

    Google Scholar 

  • Peroutka S (1987) Incidence of recreational use of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) on an undergraduate campus. New Engl J Med 317:1542–1543

    Google Scholar 

  • Peroutka SJ, Newman H, Harris H (1988) Subjective effects of 3,4-methylenedioxymethamphetamine in recreational users. Neuropsychopharmacology 1:273–277

    Google Scholar 

  • Pickens RW, Crowder WF (1967) Effect of CS-US interval on conditioning of drug response, with assessment of speed of conditioning. Psychopharmacology 11:88–94

    Google Scholar 

  • Pickens R, Dougherty JA (1971) Conditioning of the activity effects of drugs. In: Thompson T, Pickens R (eds) Stimulus properties of drugs. Appleton-Century-Crofts, New York, pp 39–50

    Google Scholar 

  • Poncelet M, Dangoumau L, Soubrie P, Simon P (1987) Effects of neuroleptic drugs, clonidine and lithium on the expression of conditioned behavioral excitation in rats. Psychopharmacology 92:393–397

    Google Scholar 

  • Post RM, Lockfeld A, Squillace KM, Contel NR (1981) Drug environment interaction: context dependency of cocaine induced behavioural sensitization. Life Sci 28:755–760

    Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME, Langston JW (1988) (±)3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260:51–55

    Google Scholar 

  • Schechter M (1986) Discriminative profile of MDMA. Pharmacol Biochem Behay 24:1533–1537

    Google Scholar 

  • Schmidt C (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 240:1–7

    Google Scholar 

  • Schmidt CJ, Levin JA, Lovenberg W (1987) In vitro and in vivo neurochemical effects of MDMA on striatal monoaminergic systems in rat brain. Biochem Pharmacol 36:747–755

    Google Scholar 

  • Shulgin AT, Nichols DE (1978) Characterization of three new psychotomimetics. In: Stillman RC, Willette RE (eds) The pharmacology of hallucinogens. Pergamon Press, New York, pp 74–83

    Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1982) Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Res 253:185–193

    Google Scholar 

  • Steele TD, Nichols DE, Yim GK (1987) Stereochemical effects of 3,4-methylenedioxymethamphetamine (MDMA) and related amphetamine derivatives on inhibition of uptake of [3H]monoamines into synaptosomes from different regions of rat brain. Biochem Pharmacol 36:2297–2303

    Google Scholar 

  • Stewart J, Eikelboom R (1987) Conditioned drug effects. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 19. Plenum Press, New York, pp 1–57

    Google Scholar 

  • Stone D, Stahl D, Hanson G, Gibb J (1986) The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 128:41–48

    Google Scholar 

  • Swerdlow NR, Koob GF (1984) Restrained rats learn amphetamine-conditioned locomotion, but not place preference. Psychopharmacology 84:163–166

    Google Scholar 

  • Tilson HA, Rech RH (1973) Conditioned drug effects and absence of tolerance to d-amphetamine induced motor activity. Pharmacol Biochem Behav 1:149–153

    Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is publication number 5732BCR from the Research Institute of Scripps Clinic

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, L.H., Koob, G.F. MDMA produces stimulant-like conditioned locomotor activity. Psychopharmacology 99, 352–356 (1989). https://doi.org/10.1007/BF00445556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00445556

Key words

Navigation