Skip to main content
Log in

Discretizing dynamical systems with generalized Hopf bifurcations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the discretizations of parameter-dependent, continuous-time dynamical systems. We show that the general one-step methods shift a generalized Hopf bifurcation and turn it into a generalized Neimark–Sacker point. We analyze the effect of discretization methods on the emanating Hopf curve. In particular, we obtain estimates for the eigenvalues of the discretized system along this curve. A detailed analysis of the discretized first Lyapunov coefficient is also given. The results are illustrated by a numerical example. Dynamical consequences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander M., Summers A., Moghadas S.: Neimark-Sacker bifurcations in a non-standard numerical scheme for a class of positivity-preserving ODEs. Proc. R. Soc. A 462, 3167–3184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Algaba A., Freire E., Rodriguez-Luis A.J., Gamero E.: Analysis of Hopf and Takens-Bogdanov bifurcations in a modified Van der Pol-Duffing oscillator. Nonlinear Dyn. 16, 369–404 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beyn, W.-J.: Numerical methods for dynamical systems. In: Advances in Numerical Analysis, pp. 175–236. Oxford Sci. Publ., Ed., vol. I. Oxford University Press, New York, (1991)

  4. Beyn, W.-J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Y.A., Sandstede, B.: Numerical continuation, and computation of normal forms. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 149–219. Elsevier, Amsterdam (2002)

  5. Beyn W.-J., Zou J.-K.: On manifolds of connecting orbits in discretizations of dynamical systems. Nonlinear Anal. 52(5), 1499–1520 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi F., Ushiki S., Fujii H.: Real and ghost bifurcation dynamics in difference schemes for ordinary differential equations. In: Küpper, T., Mittelmann, H., Weber, H. (eds) Numerical Methods for Bifurcation Problems, vol. 70, pp. 79–104. Birkhäuser-Verlag, Boston (1984)

    Google Scholar 

  7. Eirola T.: Two concepts for numerical periodic solutions of ODEs. Appl. Math. Comput. 31, 121–131 (1989)

    Article  MathSciNet  Google Scholar 

  8. Freire E., Rodriguez-Luis A.J.: Numerical bifurcation analysis of electronic circuits. In: Krauskopf, B., Osinga, H., Galán-Vioque, J. (eds) Numerical Continuation Methods for Dynamical Systems, pp. 221–251. Springer-Verlag, Berlin (2007)

    Chapter  Google Scholar 

  9. Freire E., Rodriguez-Luis A.J., Gamero E., Ponce E.: A case study for homoclinic chaos in an autonomous electronic circuit. A trip from Takens-Bogdanov to Hopf-Shil’nikov. Physica D 62, 230–253 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garay B.: On C j-closeness between the solution flow and its numerical approximation. J. Differ. Equ. Appl. 2(1), 67–86 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Govaerts W.: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  12. Govaerts W., Kuznetsov Y.A., Sijnave B.: Numerical methods for the generalized Hopf bifurcation. SIAM J. Numer. Anal. 38(1), 329–346 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Griewank A., Reddien G.: The calculation of Hopf points by a direct method. IMA J. Numer. Anal. 3(3), 295–303 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guckenheimer J., Myers M., Sturmfels B.: Computing Hopf bifurcations I. SIAM J. Numer. Anal. 34(1), 1–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hofbauer J., Iooss G.: A Hopf bifurcation theorem for difference equations approximating a differential equation. Monatsh. Math. 98(2), 99–113 (1984)

    Article  MathSciNet  Google Scholar 

  16. Koto T.: Naimark-Sacker bifurcations in the Euler method for a delay differential equation. BIT 39(1), 110–115 (1998)

    Article  MathSciNet  Google Scholar 

  17. Kuznetsov Y.A.: Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE’S. SIAM J. Numer. Anal. 36(4), 1104–1124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuznetsov, Y.A.: Elements of applied bifurcation theory, 3rd edn. In: Applied Mathematical Sciences, vol. 112. Springer-Verlag, New York (2004)

  19. Kuznetsov, Y.A., Levitin, V.V.: CONTENT: a multiplatform environment for analyzing dynamical systems. Dynamical Systems Laboratory, Centrum voor Wiskunde en Informatica, Amsterdam. http://www.math.uu.nl/people/kuznet/CONTENT/ (1997)

  20. Kuznetsov Y.A., Meijer H.G.E.: Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues. SIAM J. Sci. Comput. 26(6), 1932–1954 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lóczi, L.: Discretizing elementary bifurcations. PhD thesis, Budapest University of Technology (2006)

  22. Lóczi L., Páez Chávez J.: Preservation of bifurcations under Runge-Kutta methods. Int. J. Qual. Theory Differ. Equ. Appl. 3(1–2), 81–98 (2009)

    Google Scholar 

  23. Lubich C., Ostermann A.: Hopf bifurcation of reaction-diffusion and Navier-Stokes equations under discretization. Numer. Math. 81, 53–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Páez Chávez J.: Discretizing bifurcation diagrams near codimension two singularities. Int. J. Bifurc. Chaos Appl. Sci. Eng. 20(5), 1391–1403 (2010)

    Article  MATH  Google Scholar 

  25. Roose D., Hlavacek V.: A direct method for the computation of Hopf bifurcation points. SIAM J. Appl. Math. 45(6), 879–894 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stuart A., Humphries A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  27. Vainikko, G.: Funktionalanalysis der Diskretisierungsmethoden. Teubner Verlagsgesellschaft, Leipzig (1976)

  28. Wang X., Blum E., Li Q.: Consistency of local dynamics and bifurcation of continuous-time dynamical systems and their numerical discretizations. J. Differ. Equ. Appl. 4(1), 29–57 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Werner B.: Computation of Hopf bifurcation with bordered matrices. SIAM J. Numer. Anal. 33(2), 435–455 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu H., Janovský V., Werner B.: Numerical computation of degenerate Hopf bifurcation points. ZAMM Z. Angew. Math. Mech. 78(12), 807–821 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Páez Chávez.

Additional information

J. Páez Chávez was supported by CRC 701 ‘Spectral Structures and Topological Methods in Mathematics’, Bielefeld University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Páez Chávez, J. Discretizing dynamical systems with generalized Hopf bifurcations. Numer. Math. 118, 229–246 (2011). https://doi.org/10.1007/s00211-010-0340-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0340-5

Mathematics Subject Classification (2000)

Navigation