Skip to main content

Some Aspects on Global Analysis of Discrete Time Dynamical Systems

  • Conference paper
  • First Online:
Qualitative Theory of Dynamical Systems, Tools and Applications for Economic Modelling

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

  • 672 Accesses

Abstract

Dynamical systems theory distinguishes two types of bifurcations: those which can be studied in a small neighborhood of an invariant set (local) and those which cannot (global). In contrast to local bifurcations, global ones cannot be investigated by a Taylor expansion, neither they are detected by purely performing stability analysis of periodic points. Global bifurcations often occur when larger invariant sets of the system collide with each other or with other fixed points/cycles. This chapter focuses on several aspects of global bifurcation analysis of discrete time dynamical systems, covering homoclinic bifurcations as well as inner and boundary crises of attracting sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The map \(T: X \rightarrow X\) is said to have sensitive dependence on initial conditions if there exists \(\delta > 0\) such that for any \(\mathbf {x}\in X\) and any neighborhood \(U(\mathbf {x})\) there exist \(\mathbf {y}\in U(\mathbf {x})\) and \(t \ge 0\) such that \(|T^t(\mathbf {x}) - T^t(\mathbf {y})| > \delta \).

  2. 2.

    A subset A of a topological space X is said to be of second category in X if A cannot be written as the countable union of subsets which are nowhere dense in X.

  3. 3.

    Some authors use also the term repelling in this case, though it might be confusing since there is more strict definition of a repelling set.

  4. 4.

    In the original paper of M. Hénon this map is written in slightly different form, namely, \({\widetilde{H}_{a, b}}{:}\,(x, y) \rightarrow (1 + y - a x^2, bx)\), but topological conjugacy between \(\widetilde{H}_{a, b}\) and \(H_{a, b}\) can be easily shown.

References

  1. Agliari, A., Bischi, G.I., Dieci, R., Gardini, L.: Global bifurcations of closed invariant curves in two-dimensional maps: a computer assisted study. Int. J. Bifurcat. Chaos 15(4), 1285–1328 (2005)

    Article  MathSciNet  Google Scholar 

  2. Agliari, A., Gardini, L., Puu, T.: Some global bifurcations related to the appearance of closed invariant curves. Math. Comput. Simul. 68, 201–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (1996)

    MATH  Google Scholar 

  4. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332–334 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bischi, G.I., Gardini, L., Kopel, M.: Analysis of global bifurcations in a market share attraction model. J. Econ. Dyn. Control 24, 855–879 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brock, W.A., Hommes, C.H.: Econometrica 65(5), 1059–1095 (1997)

    Article  MathSciNet  Google Scholar 

  7. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood City (1989)

    MATH  Google Scholar 

  8. de Vilder, R.: Complicated endogenous business cycles under gross substitutability. J. Econ. Theory 71, 416–442 (1996)

    Article  MATH  Google Scholar 

  9. Farmer, J.D., Ott, E., Yorke, J.A.: The dimension of chaotic attractors. Phys. D 7(1–3), 153–180 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gardini, L.: Homoclinic bifurcations in \(n\)-dimensional endomorphisms, due to expanding periodic points. Nonlinear Anal.: Theory Methods Appl. 23(8), 1039–1089 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gardini, L., Hommes, C.H., Tramontana, F., de Vilder, R.: Forward and backward dynamics in implicitly defined overlapping generations models. J. Econ. Behav. Organ. 71, 110–129 (2009)

    Article  Google Scholar 

  12. Gardini, L., Mira, C.: Noninvertible maps. In: Nonlinear Economic Dynamics, pp. 239–254. Nova Science Publishers, Inc. (2010)

    Google Scholar 

  13. Gardini, L., Sushko, I., Avrutin, V., Schanz, M.: Critical homoclinic orbits lead to snap-back repellers. Chaos Solitions Fractals 44, 433–449 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Grandmont, J.M.: Expectations driven nonlinear business cycles. In: Rheinisch-Westfälische Akademie der Wissenschaften. VS Verlag für Sozialwissenschaften (1993)

    Google Scholar 

  15. Grebogi, C., Ott, E., Pelikan, S., Yorke, J.A.: Strange attractors that are not chaotic. Phys. D 13, 261–268 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Phys. D 7(1–3), 181–200 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Applied Mathematical Sciences, vol. 42. Springer (1983)

    Google Scholar 

  18. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ikeda, K.: Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30, 257–261 (1979)

    Article  ADS  Google Scholar 

  20. Ikeda, K., Daido, H., Akimoto, O.: Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45(9), 709–712 (1980)

    Article  ADS  Google Scholar 

  21. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marotto, F.R.: Snap-back repellers imply chaos in \(r^n\). J. Math. Anal. Appl. 63(1), 199–223 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Michener, R.W., Ravikumar, B.: Chaotic dynamics in a cash-in-advance economy. J. Econ. Dyn. Control 22, 1117–1137 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mira, C., Gardini, L.: From the box-within-a-box bifurcations organization to the julia set. Part I. Int. J. Bifurcat. Chaos 19(1), 281–327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mira, C., Gardini, L., Barugola, A., Cathala, J.C.: Chaotic Dynamics in Two-Dimensional Noninvertible Maps. Nonlinear Science. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  26. Myrberg, P.J.: Iteration der reellen polynome zweiten grades iii. Annales AcademiæScientiarum Fennicæ 336, 3–18 (1963)

    MathSciNet  MATH  Google Scholar 

  27. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press (1993)

    Google Scholar 

  28. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems: An Introduction. Springer, New York (1982)

    Book  MATH  Google Scholar 

  29. Ruelle, D.P., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20(3), 167–192 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sharkovskii, A.N.: Problem of isomorphism of dynamical systems. In: Proceedings of 5th International Conference on Nonlinear Oscillations, vol. 2, pp. 541–544 (1969)

    Google Scholar 

  31. Sharkovskii, A.N., Maistrenko, Y.L., Romanenko, E.Y.: Difference Equations and Their Applications. Kluwer Academic Publisher, Dordrecht (1993)

    Book  Google Scholar 

  32. Silverman, S.: On maps with dense orbits and the definition of chaos. Rocky Mt. J. Math. 22(1), 353–375 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wiggins, S.: Global Bifurcations and Chaos: Analytical Methods, Applied Mathematical Sciences, vol. 73. Springer, New York (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia Panchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Panchuk, A. (2016). Some Aspects on Global Analysis of Discrete Time Dynamical Systems. In: Bischi, G., Panchuk, A., Radi, D. (eds) Qualitative Theory of Dynamical Systems, Tools and Applications for Economic Modelling. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-33276-5_2

Download citation

Publish with us

Policies and ethics