Skip to main content
Log in

On bifurcations and local stability in 1-D nonlinear discrete dynamical systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a theory of bifurcations and local stability of fixed-points (or period-1 solutions) in one-dimensional nonlinear discrete dynamical systems is presented. The linearized discrete dynamical systems are discussed first, and the higher-order singularity and monotonic and oscillatory stability of fixed-points for one-dimensional nonlinear discrete dynamical systems are presented. The monotonic and oscillatory bifurcations of fixed-points (period-1 solutions) are presented. A few special examples in 1-dimensional maps are presented for a better understanding of the general theory for the stability and bifurcation of nonlinear discrete dynamical systems. Global analysis of period-2 motions for the sampled nonlinear discrete dynamical systems are carried out, and global illustrations of period-1 to period-2 solutions in the sampled nonlinear discrete dynamical systems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bashforth F, Adams AC (1883) Theories of capillary action. Cambridge University Press, London

    Google Scholar 

  2. Moulton FR (1926) New methods in exterior ballistics. University of Chicago Press, Chicago

    MATH  Google Scholar 

  3. Runge C (1895) Uberdie numerische auflosung von differentialgleichungen. Math Ann 46:167–178

    Article  MathSciNet  Google Scholar 

  4. Huen K (1990) Neue methoden zur approximativen integration de differentailgleichungeneiner unabhangigen veranderlichen. Z Angew Math Phys 45:23–38

    Google Scholar 

  5. Kutta W (1901) Beitrag zur naherungsweisen intergration totaler differentialgleichungen. Z Angew Math Phys 46:435–453

    MATH  Google Scholar 

  6. Luo ACJ (2015) Discretization and implicit mapping dynamics. Higher Education Press/Springer, Beijing/Heidelberg

    Book  Google Scholar 

  7. Poincaré H (1885) Sur le equations aux differentielles ordinaires et aux differences finies. Am J Math 7:203–258

    Article  Google Scholar 

  8. Birkhoff GD (1911) General theory of linear difference equations. Trans Am Math Soc 12:243–284

    Article  MathSciNet  Google Scholar 

  9. Birkhoff GD, Trjitzinsky WJ (1933) Analytic theory of singular difference equations. Acta Math 60:1–89

    Article  MathSciNet  Google Scholar 

  10. Trjitzinsky WJ (1933) Analytic theory of linear q-difference equations. Acta Math 61:1–38

    Article  MathSciNet  Google Scholar 

  11. Stephens CF (1948) Nonlinear difference equations analytic in a parameter. Trans Am Math Soc 64:268–288

    Article  MathSciNet  Google Scholar 

  12. Grimm LJ, Harrs WA Jr (1965) On nonlinear difference equations. Publ Res Inst Math Sci 1:211–252

    Article  MathSciNet  Google Scholar 

  13. Julia G (1918) Mémoire sur l’itération des fonctions rationnelles. Journal de Mathématiques Pures et Appliquées 1:47–246

    MATH  Google Scholar 

  14. Fatou P (1919) Sur les équations fonctionnelles, I. Bulletin de la Société Mathématique de France 47:161–271

    Article  MathSciNet  Google Scholar 

  15. Fatou P (1920) Sur les équations fonctionnelles, II. Bulletin de la Société Mathématique de France 48:33–94

    Article  MathSciNet  Google Scholar 

  16. Fatou P (1920) Sur les équations fonctionnelles, III. Bulletin de la Société Mathématique de France. 48:208–314

    Article  MathSciNet  Google Scholar 

  17. Fatou P (1926) Sur l’itération des fonctions transcendantes Entières. Acta Mathematica 47(4):337–370

    Article  MathSciNet  Google Scholar 

  18. Myrberg PJ (1962) Sur 1’iteration des polynomes reels quadratiques. Journal de Mathématiques Pures et Appliquées Ser 9(41):339–351

    MATH  Google Scholar 

  19. Sarkovskii AN (1964) Coexistence of cycles of a continuous map of the line into itself. Ukrains’kyi Matematychnyi Zhurnal 16:61–71

    Google Scholar 

  20. Stefan P (1977) A theorem of Sarkovskii on the existence of periodic orbits of continuous endormorphisms of the real line. Commun Math Phys 54:237–248

    Article  Google Scholar 

  21. Li T, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992

    Article  MathSciNet  Google Scholar 

  22. Gumowski I, Mira C (1975) Accumulation de bifurcations dans une recurrence, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Série A: sciences. Mathématiques 281:45–48

    Google Scholar 

  23. Gumowski I, Mira C (1982) Recurrence and discrete dynamical systems. Lecture notes in mathematics, vol 809. Springer, Berlin

    Google Scholar 

  24. Metropolis M, Stein ML, Stein PR (1973) On the finite limit sets for transformations of the unit interval. J Combin Theory 15:25–44

    Article  MathSciNet  Google Scholar 

  25. May RB (1976) Simple Mathematical models with complicated dynamics. Nature 261:456–467

    MATH  Google Scholar 

  26. Feigenbaum MJ (1978) Quantitative universality for a class of nonlinear transformations. J Stat Phys 19:25–52

    Article  MathSciNet  Google Scholar 

  27. Singer D (1978) Stable orbits and bifurcations of maps of the interval. SIAM J Appl Math 35:260–267

    Article  MathSciNet  Google Scholar 

  28. Iooss G (1979) Bifurcations of maps and applications. North-Holland, New York

    MATH  Google Scholar 

  29. Collet P, Eckmann JP (1980) Iterated maps of the interval as dynamical systems. Birkhauser, Boston

    MATH  Google Scholar 

  30. Jakobson MV (1981) Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun Math Phys 81:39–88

    Article  MathSciNet  Google Scholar 

  31. Whitley D (1983) Discrete dynamical systems in dimensions one and two. Bull Lond Math Soc 15:177–217

    Article  MathSciNet  Google Scholar 

  32. Luo ACJ, Han RPS (1992) Period-doubling and multifractals in 1-D iterative maps. Chaos Solitons Fractal 2:335–348

    Article  MathSciNet  Google Scholar 

  33. Grandmont JM (2008) Nonlinear difference equations, bifurcations and chaos: an introduction. Res Econ 62:122–177

    Article  Google Scholar 

  34. Hirsch MW, Smale S (1974) Differential equations, dynamical systems, and Linear Algebra. Academic Press, New York

    MATH  Google Scholar 

  35. Luo ACJ (2012) Regularity and complexity in dynamical systems. Springer, New York

    Book  Google Scholar 

  36. Luo ACJ (2020) Bifurcation and stability in nonlinear dynamical systems. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, A.C.J. On bifurcations and local stability in 1-D nonlinear discrete dynamical systems. Int. J. Dynam. Control 9, 1–29 (2021). https://doi.org/10.1007/s40435-020-00632-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00632-z

Keywords

Navigation