Skip to main content

Advertisement

Log in

Sitagliptin exerts anti-apoptotic effect in nephrotoxicity induced by cisplatin in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Sitagliptin is a selective inhibitor of dipeptidylpeptidase-4 enzyme used for the management of diabetes mellitus type II. The anti-inflammatory, antioxidant, and anti-apoptotic properties of sitagliptin were documented. This study was designed to explore the effect of sitagliptin (10 mg/kg, orally) on nephrotoxicity induced by cisplatin (7 mg/kg, i.p.) in Sprague-Dawley rats. Nephrotoxicity of cisplatin was manifested by elevation in renal somatic index, proteinuria, blood urea nitrogen, creatinine in serum, lactate dehydrogenase, kidney malondialdehyde, NF-κB, Bax, and annexin V. Furthermore, body weight, serum albumin, nitric oxide, creatinine clearance, and the renal antioxidant defense system were significantly decreased by cisplatin. Sitagliptin administration ameliorated cisplatin-induced changes in kidney function, oxidative stress, inflammation, and apoptosis parameters. Improvement in both morphological examination of kidney and the urinary bladder response to acetylcholine supported these results. These findings indicated that sitagliptin, through its anti-inflammatory, anti-apoptotic, and antioxidant effects, can be used as a nephroprotectant against nephrotoxicity induced by cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cis:

Cisplatin

Sita:

Sitagliptin

Cr:

Creatinine

NF-κB:

Nuclear factor kappa-B

Reference

  • Abuelezz SA, Hendawy N, Abdel GS (2016) Alleviation of renal mitochondrial dysfunction and apoptosis underlies the protective effect of sitagliptin in gentamicin-induced nephrotoxicity. J Pharm Pharmacol 68:523–532

    Article  CAS  PubMed  Google Scholar 

  • An Y, Xin H, Yan W, Zhou X (2011) Amelioration of cisplatin-induced nephrotoxicity by pravastatin in mice. Exp Toxicol Pathol 63:215–219

    Article  CAS  PubMed  Google Scholar 

  • Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23:460–464

    Article  CAS  PubMed  Google Scholar 

  • Badary OA, Nagi MN, al-Shabanah OA, al-Sawaf HA, al-Sohaibani MO, al-Bekairi AM (1997) Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol 75:1356–1361

    Article  CAS  PubMed  Google Scholar 

  • Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH (2005) Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci 76:2125–2135

    Article  CAS  PubMed  Google Scholar 

  • Baek SH, Kim SH, Kim JW, Kim YJ, Lee KW, Na KY (2015) Effects of a DPP4 inhibitor on cisplatin-induced acute kidney injury: study protocol for a randomized controlled trial. Trials 16:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Baradaran A, Nasri H, Rafieian-Kopaei M (2015) Protection of renal tubular cells by antioxidants: current knowledge and new trends. Cell J 16:568–571

    PubMed  PubMed Central  Google Scholar 

  • Bartels H, Bohmer M, Heierli C (1972) Serum creatinine determination without protein precipitation. Clin Chim Acta 37:193–197

    Article  CAS  PubMed  Google Scholar 

  • Bompart G (1989) Cisplatin-induced changes in cytochrome P-450, lipid peroxidation and drug-metabolizing enzyme activities in rat kidney cortex. Toxicol Lett 48:193–199

    Article  CAS  PubMed  Google Scholar 

  • Chang MW, Chen CH, Chen YC, Wu YC, Zhen YY, Leu S, Tsai TH, Ko SF, Sung PH, Yang CC, Chiang HJ, Chang HW, Chen YT, Yip HK (2015) Sitagliptin protects rat kidneys from acute ischemia-reperfusion injury via upregulation of GLP-1 and GLP-1 receptors. Acta Pharmacol Sin 36:119–130

    Article  CAS  PubMed  Google Scholar 

  • Chen YT, Tsai TH, Yang CC, Sun CK, Chang LT, Chen HH, Chang CL, Sung PH, Zhen YY, Leu S, Chang HW, Chen YL, Yip HK (2013) Exendin-4 and sitagliptin protect kidney from ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med 11:270

    Article  PubMed  PubMed Central  Google Scholar 

  • Chirino YI, Sanchez-Gonzalez DJ, Martinez-Martinez CM, Cruz C, Pedraza-Chaverri J (2008) Protective effects of apocynin against cisplatin-induced oxidative stress and nephrotoxicity. Toxicology 245:18–23

    Article  CAS  PubMed  Google Scholar 

  • Chtourou Y, Aouey B, Aroui S, Kebieche M, Fetoui H (2016) Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem Biol Interact 243:1–9

    Article  CAS  PubMed  Google Scholar 

  • Daughaday WH, Lowry OH, Rosebrough NJ, Fields WS (1952) Determination of cerebrospinal fluid protein with the Folin phenol reagent. J Lab Clin Med 39:663–665

    CAS  PubMed  Google Scholar 

  • Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 31:87–96

    Article  CAS  PubMed  Google Scholar 

  • El-Agamy DS, Abo-Haded HM, Elkablawy MA (2016) Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Exp Biol Med (Maywood ) 241:1577–1587

    Article  CAS  Google Scholar 

  • Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA, Edelstein CL (2007) Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 322:8–15

    Article  CAS  PubMed  Google Scholar 

  • Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry RJ, Chiamori N, Golub OJ, Berkman S (1960) Revised spectrophotometric methods for the determination of glutamic-oxalacetic transaminase, glutamic-pyruvic transaminase, and lactic acid dehydrogenase. Am J Clin Pathol 34:381–398

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Yi X, Hsu S, Wang CY, Dong Z (2004) Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am J Physiol Renal Physiol 287:F1140–F1147

    Article  CAS  PubMed  Google Scholar 

  • Joo KW, Kim S, Ahn SY, Chin HJ, Chae DW, Lee J, Han JS, Na KY (2013) Dipeptidyl peptidase IV inhibitor attenuates kidney injury in rat remnant kidney. BMC Nephrol 14:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan P, Carmo-Fonseca M (2000) Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci 57:1229–1235

    Article  CAS  PubMed  Google Scholar 

  • Kamiya H (2017) A systematic review of the benefits and harms of dipeptidyl peptidase-4 inhibitor for chronic kidney disease. 21(1):72–83. doi:10.1111/hdi.12438

  • Karwasra R, Kalra P, Gupta YK, Saini D, Kumar A, Singh S (2016) Antioxidant and anti-inflammatory potential of pomegranate rind extract to ameliorate cisplatin-induced acute kidney injury. Food Funct 7:3091–3101

    Article  CAS  PubMed  Google Scholar 

  • Katagiri D, Hamasaki Y, Doi K, Okamoto K, Negishi K, Nangaku M, Noiri E (2013) Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J Am Soc Nephrol 24:2034–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai Y, Taniuchi S, Okahara S, Nakamura M, Gemba M (2005) Relationship between cisplatin or nedaplatin-induced nephrotoxicity and renal accumulation. Biol Pharm Bull 28:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann MK, Burkhardt G, Kohler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12:2478–2480

    Article  CAS  PubMed  Google Scholar 

  • Lambeir AM, Durinx C, Scharpe S, De MI (2003) Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40:209–294

    Article  CAS  PubMed  Google Scholar 

  • Lawrence T, Fong C (2010) The resolution of inflammation: anti-inflammatory roles for NF-kappaB. Int J Biochem Cell Biol 42:519–523

    Article  CAS  PubMed  Google Scholar 

  • Lebwohl D, Canetta R (1998) Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer 34:1522–1534

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Song JM, Park MY, Kang SK, Kim YK, Jung JS (2001) Cisplatin-induced apoptosis by translocation of endogenous Bax in mouse collecting duct cells. Biochem Pharmacol 62:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Li J, Guan M, Li C, Lyv F, Zeng Y, Zheng Z, Wang C, Xue Y (2014) The dipeptidyl peptidase-4 inhibitor sitagliptin protects against dyslipidemia-related kidney injury in apolipoprotein E knockout mice. Int J Mol Sci 15:11416–11434

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Phys 270:F700–F708

    CAS  Google Scholar 

  • Liu Y, Webb HK, Fukushima H, Micheli J, Markova S, Olson JL, Kroetz DL (2012) Attenuation of cisplatin-induced renal injury by inhibition of soluble epoxide hydrolase involves nuclear factor kappaB signaling. J Pharmacol Exp Ther 341:725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour MA, al-Shabanah OA, El-Khashef HA (2003) L-arginine ameliorates kidney function and urinary bladder sensitivity in experimentally-induced renal dysfunction in rats. J Biochem Mol Biol 36:373–378

    CAS  PubMed  Google Scholar 

  • Marques C, Mega C, Goncalves A, Rodrigues-Santos P, Teixeira-Lemos E, Teixeira F, Fontes-Ribeiro C, Reis F, Fernandes R (2014) Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediat Inflamm 2014:538737

    Article  Google Scholar 

  • Mest HJ, Mentlein R (2005) Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia 48:616–620

    Article  CAS  PubMed  Google Scholar 

  • Meyer KB, Madias NE (1994) Cisplatin nephrotoxicity. Miner Electrolyte Metab 20:201–213

    CAS  PubMed  Google Scholar 

  • Nader MA, El-Awady MS, Shalaby AA, El-Agamy DS (2012) Sitagliptin exerts anti-inflammatory and anti-allergic effects in ovalbumin-induced murine model of allergic airway disease. Naunyn Schmiedeberg's Arch Pharmacol 385:909–919

    Article  CAS  Google Scholar 

  • Nozaki Y, Kinoshita K, Hino S, Yano T, Niki K, Hirooka Y, Kishimoto K, Funauchi M, Matsumura I (2015) Signaling Rho-kinase mediates inflammation and apoptosis in T cells and renal tubules in cisplatin nephrotoxicity. Am J Physiol Renal Physiol 308:F899–F909

    Article  CAS  PubMed  Google Scholar 

  • Offerman JJ, Meijer S, Sleijfer DT, Mulder NH, Donker AJ, Koops HS, van der Hem GK (1984) Acute effects of cis-diamminedichloroplatinum (CDDP) on renal function. Cancer Chemother Pharmacol 12:36–38

    Article  CAS  PubMed  Google Scholar 

  • Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM (1999) Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411:385–400

    Article  CAS  PubMed  Google Scholar 

  • Sadzuka Y, Shoji T, Takino Y (1992) Effect of cisplatin on the activities of enzymes which protect against lipid peroxidation. Biochem Pharmacol 43:1872–1875

    Article  CAS  PubMed  Google Scholar 

  • Saleh S, El-Demerdash E (2005) Protective effects of L-arginine against cisplatin-induced renal oxidative stress and toxicity: role of nitric oxide. Basic Clin Pharmacol Toxicol 97:91–97

    Article  CAS  PubMed  Google Scholar 

  • Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A (2010) NF-kappaB in renal inflammation. J Am Soc Nephrol 21:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Shalaby A, Malek HA (2014) Renoprotective effect of sitagliptin (dipeptidyl peptidase- 4 inhibitor) aganist cisplatin induced nephrotoxicity in mice. British Journal of Pharmaceutical Research 4:1116–1129

    Article  CAS  Google Scholar 

  • Simsek B, Buyukcelik M, Soran M, Bayazit AK, Noyan A, Seydaoglu G, Anarat A (2008) Urinary annexin V in children with nephrotic syndrome: a new prognostic marker? Pediatr Nephrol 23:79–82

    Article  PubMed  Google Scholar 

  • Suddek GM (2013) Montelukast ameliorates kidney function and urinary bladder sensitivity in experimentally induced renal dysfunction in rats. Fundam Clin Pharmacol 27:186–191

    Article  CAS  PubMed  Google Scholar 

  • Suddek GM, El-Kenawi AE, Abdel-Aziz A, El-Kashef HA (2011) Celecoxib, a selective cyclooxygenase-2 inhibitor, attenuates renal injury in a rat model of cisplatin-induced nephrotoxicity. Chemotherapy 57:321–326

    Article  CAS  PubMed  Google Scholar 

  • Van EM, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  Google Scholar 

  • Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis: flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  • Wang XM, Yang YJ, Wu YJ, Zhang Q, Qian HY (2015) Attenuating hypoxia-induced apoptosis and autophagy of mesenchymal stem cells: the potential of sitagliptin in stem cell-based therapy. Cell Physiol Biochem 37:1914–1926

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Dong G, Franklin J, Dong Z (2007) The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int 72:53–62

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges Dr. Mohamed F. Hamed, “Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt,” for providing assistance in the histopathological examination. In addition, the author thanks Dr. Mona S Gouida, “Assistant Consultant of Molecular Immunology, Genetics Unit, Head of Flow Cytometry Unit, Mansoura Children Hospital,” for providing assistance in flow cytometry technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehab S. Abdelrahman.

Ethics declarations

All procedures have been approved by the “Research Ethics Committee of Faculty of Pharmacy, Mansoura University, Egypt” which is in accordance with Laboratory Animal Care (NIH publication no. 85-23).

Conflict of interest

The authors declare that they have no conflict of interest.

Funding statement

No funding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, R.S. Sitagliptin exerts anti-apoptotic effect in nephrotoxicity induced by cisplatin in rats. Naunyn-Schmiedeberg's Arch Pharmacol 390, 721–731 (2017). https://doi.org/10.1007/s00210-017-1367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1367-2

Keywords

Navigation