Skip to main content

Advertisement

Log in

Terfenadine induces anti-proliferative and apoptotic activities in human hormone-refractory prostate cancer through histamine receptor-independent Mcl-1 cleavage and Bak up-regulation

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Although the results of several studies have underscored the regulatory effect of H1-histamine receptors in cell proliferation of some cancer cell types, its effect in prostate cancers remains unclear. We have therefore studied the effect of terfenadine (an H1-histamine receptor antagonist) in prostate cancer cell lines. Our data demonstrate that terfenadine was effective against PC-3 and DU-145 cells (two prostate cancer cell lines). In contrast, based on the sulforhodamine B assay, loratadine had less potency while fexofenadine and diphenhydramine had little effect. Terfenadine induced the cleavage of Mcl-1 cleavage into a pro-apoptotic 28-kDa fragment and up-regulation of Bak, resulting in the loss of mitochondrial membrane potential (ΔΨm) and the release of cytochrome c and apoptosis-inducing factor into the cytosol. The activation of caspase cascades was detected to be linked to terfenadine action. Bak up-regulation was also examined at both the transcriptional and translational levels, and Bak activation was validated based on conformational change to expose the N terminus. Terfenadine also induced an indirect—but not direct—DNA damage response through the cleavage and activation of caspase-2, phosphorylation and activation of Chk1 and Chk2 kinases, phosphorylation of RPA32 and acetylation of Histone H3; these processes were highly correlated to severe mitochondrial dysfunction and the activation of caspase cascades. In conclusion, terfenadine induced apoptotic signaling cascades against HRPCs in a sequential manner. The exposure of cells to terfenadine caused the up-regulation and activation of Bak and the cleavage of Mcl-1, leading to the loss of ΔΨm and activation of caspase cascades which further resulted in DNA damage response and cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andolfo I, De Martino D, Liguori L, Petrosino G, Troncone G, Tata N, Galasso A, Roma C, Chiancone F, Zarrilli S, Arrigoni G, Staibano S, Imbimbo C, Zollo M (2011) Correlation of NM23-H1 cytoplasmic expression with metastatic stage in human prostate cancer tissue. Naunyn Schmiedeberg’s Arch Pharmacol 384:489–498

    Article  CAS  Google Scholar 

  • Beale PJ, Rogers P, Boxall F, Sharp SY, Kelland LR (2000) Bcl-2 family protein expression and platinum drug resistance in ovarian carcinoma. Br J Cancer 82:436–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blaya B, Nicolau-Galmés F, Jangi SM, Ortega-Martínez I, Alonso-Tejerina E, Burgos-Bretones J, Pérez-Yarza G, Asumendi A, Boyano MD (2010) Histamine and histamine receptor antagonists in cancer biology. Inflamm Allergy Drug Targets 9:146–157

    Article  CAS  PubMed  Google Scholar 

  • Bubendorf L, Sauter G, Moch H, Jordan P, Blöchlinger A, Gasser TC, Mihatsch MJ (1996) Prognostic significance of Bcl-2 in clinically localized prostate cancer. Am J Pathol 148:1557–1565

    CAS  PubMed  Google Scholar 

  • Castilla C, Congregado B, Chinchón D, Torrubia FJ, Japón MA, Sáez C (2006) Bcl-xL is overexpressed in hormone-resistant prostate cancer and promotes survival of LNCaP cells via interaction with proapoptotic Bak. Endocrinology 147:4960–4967

    Article  CAS  PubMed  Google Scholar 

  • Chan SL, Yu VC (2004) Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 31:119–128

    Article  CAS  PubMed  Google Scholar 

  • Chirakkal H, Leech SH, Brookes KE, Prais AL, Waby JS, Corfe BM (2006) Upregulation of BAK by butyrate in the colon is associated with increased Sp3 binding. Oncogene 25:7192–7200

    Article  CAS  PubMed  Google Scholar 

  • Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC (1995) Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374:733–736

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  • Cuconati A, Mukherjee C, Perez D, White E (2003) DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 17:2922–2932

    Article  CAS  PubMed  Google Scholar 

  • De La Taille A, Vacherot F, Salomon L, Druel C, Gil Diez De Medina S, Abbou C, Buttyan R, Chopin D (2001) Hormone-refractory prostate cancer: a multi-step and multi-event process. Prostate Cancer Prostatic Dis 4:204–212

    Article  Google Scholar 

  • Dewson G, Kluck RM (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci 122:2801–2808

    Article  CAS  PubMed  Google Scholar 

  • González MA, Estes KS (1998) Pharmacokinetic overview of oral second-generation H1 antihistamines. Int J Clin Pharmacol Ther 36:292–300

    PubMed  Google Scholar 

  • Graupner V, Alexander E, Overkamp T, Rothfuss O, De Laurenzi V, Gillissen BF, Daniel PT, Schulze-Osthoff K, Essmann F (2011) Differential regulation of the proapoptotic multidomain protein Bak by p53 and p73 at the promoter level. Cell Death Differ 18:1130–1139

    Article  CAS  PubMed  Google Scholar 

  • Griffiths GJ, Corfe BM, Savory P, Leech S, Esposti MD, Hickman JA, Dive C (2001) Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. Oncogene 20:7668–7676

    Article  CAS  PubMed  Google Scholar 

  • Guerrero AD, Chen M, Wang J (2008) Delineation of the caspase-9 signaling cascade. Apoptosis 13:177–186

    Article  CAS  PubMed  Google Scholar 

  • Guh JH, Hwang TL, Ko FN, Chueh SC, Lai MK, Teng CM (1998) Antiproliferative effect in human prostatic smooth muscle cells by nitric oxide donor. Mol Pharmacol 53:467–474

    CAS  PubMed  Google Scholar 

  • Hadzijusufovic E, Peter B, Gleixner KV, Schuch K, Pickl WF, Thaiwong T, Yuzbasiyan-Gurkan V, Mirkina I, Willmann M, Valent P (2010) H1-receptor antagonists terfenadine and loratadine inhibit spontaneous growth of neoplastic mast cells. Exp Hematol 38:896–907

    Article  CAS  PubMed  Google Scholar 

  • Howell SB (2000) Resistance to apoptosis in prostate cancer cells. Mol Urol 4:225–229

    CAS  PubMed  Google Scholar 

  • Jangi SM, Asumendi A, Arlucea J, Nieto N, Perez-Yarza G, Morales MC, de la Fuente-Pinedo M, Boyano MD (2004) Apoptosis of human T-cell acute lymphoblastic leukemia cells by diphenhydramine, an H1 histamine receptor antagonist. Oncol Res 14:363–372

    CAS  PubMed  Google Scholar 

  • Jangi SM, Díaz-Pérez JL, Ochoa-Lizarralde B, Martín-Ruiz I, Asumendi A, Pérez-Yarza G, Gardeazabal J, Díaz-Ramón JL, Boyano MD (2006) H1 histamine receptor antagonists induce genotoxic and caspase-2-dependent apoptosis in human melanoma cells. Carcinogenesis 27:1787–1796

    Article  CAS  PubMed  Google Scholar 

  • Jangi SM, Ruiz-Larrea MB, Nicolau-Galmés F, Andollo N, Arroyo-Berdugo Y, Ortega-Martínez I, Díaz-Pérez JL, Boyano MD (2008) Terfenadine-induced apoptosis in human melanoma cells is mediated through Ca2+ homeostasis modulation and tyrosine kinase activity, independently of H1 histamine receptors. Carcinogenesis 29:500–509

    Article  CAS  PubMed  Google Scholar 

  • Jin HO, Park IC, An S, Lee HC, Woo SH, Hong YJ, Lee SJ, Park MJ, Yoo DH, Rhee CH, Hong SI (2006) Up-regulation of Bak and Bim via JNK downstream pathway in the response to nitric oxide in human glioblastoma cells. J Cell Physiol 206:477–486

    Article  CAS  PubMed  Google Scholar 

  • Kim YA, Xiao D, Xiao H, Powolny AA, Lew KL, Reilly ML, Zeng Y, Wang Z, Singh SV (2007) Mitochondria-mediated apoptosis by diallyl trisulfide in human prostate cancer cells is associated with generation of reactive oxygen species and regulated by Bax/Bak. Mol Cancer Ther 6:1599–1609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konopleva M, Zhao S, Hu W, Jiang S, Snell V, Weidner D, Jackson CE, Zhang X, Champlin R, Estey E, Reed JC, Andreeff M (2002) The anti-apoptotic genes Bcl-xL and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol 118:521–534

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K, Kitada S, Reed JC (1996a) Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol 148:1567–1576

    CAS  PubMed  Google Scholar 

  • Krajewska M, Moss SF, Krajewski S, Song K, Holt PR, Reed JC (1996b) Elevated expression of Bcl-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res 56:2422–2427

    CAS  PubMed  Google Scholar 

  • Lagger G, O’Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C (2011) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681

    Article  Google Scholar 

  • Lakshminarasimhan M, Steegborn C (2011) Emerging mitochondrial signaling mechanisms in physiology, aging processes, and as drug targets. Exp Gerontol 46:174–177

    Article  CAS  PubMed  Google Scholar 

  • Lee KC, Chang HT, Chou KJ, Tang KY, Wang JL, Lo YK, Huang JK, Chen WC, Su W, Law YP, Jan CR (2001) Mechanism underlying histamine-induced intracellular Ca2+ movement in PC3 human prostate cancer cells. Pharmacol Res 44:547–552

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Kim C, Zhang L, Lee YJ (2008a) Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem Pharmacol 75:2020–2033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DH, Szczepanski M, Lee YJ (2008b) Role of Bax in quercetin-induced apoptosis in human prostate cancer cells. Biochem Pharmacol 75:2345–2355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McIlroy D, Sakahira H, Talanian RV, Nagata S (1999) Involvement of caspase 3-activated DNase in internucleosomal DNA cleavage induced by diverse apoptotic stimuli. Oncogene 18:4401–4408

    Article  CAS  PubMed  Google Scholar 

  • Michels J, Johnson PW, Packham G (2005) Mcl-1. Int J Biochem Cell Biol 37:267–271

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Bhattacharya K, Mallick A, Sangwan R, Mandal C (2012) Bak compensated for Bax in p53-null cells to release cytochrome c for the initiation of mitochondrial signaling during Withanolide D-induced apoptosis. PLoS One 7:e34277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Podar K, Gouill SL, Zhang J, Opferman JT, Zorn E, Tai YT, Hideshima T, Amiot M, Chauhan D, Harousseau JL, Anderson KC (2008) A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene 27:721–731

    Article  CAS  PubMed  Google Scholar 

  • Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29:684–688

    Article  CAS  PubMed  Google Scholar 

  • Simons FE (1989) H1-receptor antagonists: clinical pharmacology and therapeutics. J Allergy Clin Immunol 84:845–861

    Article  CAS  PubMed  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Solier S, Zhang YW, Ballestrero A, Pommier Y, Zoppoli G (2012) DNA damage response pathways and cell cycle checkpoints in colorectal cancer: current concepts and future perspectives for targeted treatment. Curr Cancer Drug Targets 12:356–371

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Morokata T, Morihira K, Sato I, Takizawa S, Kaneko M, Takahashi K, Shimizu Y (2007) A dual antagonist for chemokine CCR3 receptor and histamine H1 receptor. Eur J Pharmacol 563:224–232

    Article  CAS  PubMed  Google Scholar 

  • van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P (2003) Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304:487–497

    Article  PubMed  Google Scholar 

  • Wei MC, Zong W-X, Cheng EHY, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westphal D, Dewson G, Czabotar PE, Kluck RM (2011) Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta 1813:521–531

    Article  CAS  PubMed  Google Scholar 

  • Wolf BB, Schuler M, Echeverri F, Green DR (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. Biol Chem 274:30651–30656

    Article  CAS  Google Scholar 

  • Yang-Yen HF (2006) Mcl-1: a highly regulated cell death and survival controller. J Biomed Sci 13:201–204

    Article  CAS  PubMed  Google Scholar 

  • Yoshino T, Shiina H, Urakami S, Kikuno N, Yoneda T, Shigeno K, Igawa M (2006) Bcl-2 expression as a predictive marker of hormone-refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res 12:6116–6124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support provided by the National Science Council of the Republic of China (NSC 101-2320-B-002-018-MY3 and NSC 100-2320-B-002-006-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jih-Hwa Guh.

Additional information

Wei-Ting Wang and Yen-Hui Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, WT., Chen, YH., Hsu, JL. et al. Terfenadine induces anti-proliferative and apoptotic activities in human hormone-refractory prostate cancer through histamine receptor-independent Mcl-1 cleavage and Bak up-regulation. Naunyn-Schmiedeberg's Arch Pharmacol 387, 33–45 (2014). https://doi.org/10.1007/s00210-013-0912-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0912-x

Keywords

Navigation