Skip to main content
Log in

Algebraic density property of Danilov–Gizatullin surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A Danilov–Gizatullin surface is an affine surface V which is the complement of an ample section S for the ruling of a Hirzebruch surface. The remarkable theorem of Danilov and Gizatullin states that the isomorphism class of V depends only on the self-intersection number (S.S). In this paper we apply the theorem of Danilov–Gizatullin to prove that the Lie algebra generated by the complete algebraic vector fields on V coincides with the set of all algebraic vector fields of V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersén E.: Complete vector fields on \({(\mathbb{C}^*)^n}\). Proc. Am. Math. Soc. 128(4), 1079–1085 (2000)

    Article  MATH  Google Scholar 

  2. Andersén E., Lempert L.: On the group of holomorphic automorphisms of \({\mathbb{C}^n}\). Invent. Math. 110(2), 371–388 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arzhantsev, I., Flenner, H., Kaliman, S., Kutzschebauch, F., Zaidenberg, M.: Flexible varieties and automorphism groups. (2010) arXiv:1011.5375

  4. Beauville A.: Complex Algebraic Surfaces. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  5. Borell S., Kutzschebauch F.: Non-equivalent embeddings into complex euclidean space. Int. J. Math. 17(9), 1033–1046 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daigle D., Russell P.: On log \({\mathbb{Q} }\)-homology planes and weighted projective planes. Can. J. Math. 56(6), 1145–1189 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donzelli F., Dvorsky A., Kaliman S.: Algebraic density property of homogeneus spaces. Transform. Groups 3, 551–576 (2012)

    MathSciNet  Google Scholar 

  8. Derksen H., Kutzschebauch F.: Nonlinearizable holomorphic group actions. Adv. Math. 141(2), 366–384 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Derksen, H., Kutzschebauch, F.: Global holomorphic linearization of actions of compact Lie groups on \({\mathbb{C}^n}\), Complex geometric analysis in Pohang (1997). Contemporary Mathematics, vol. 222, pp. 201–210. American Mathematical Soceity, Providence (1999)

  10. Dubouloz, A., Finston, D.R., Mehta, P.D.: Factorial threefolds with G a -actions. arXiv:0902.3873v1

  11. Gizatullin M.H.: Affine surfaces that can be augmented by a nonsingular rational curve. Izv. Akad. Nauk SSSR Ser. Mat. 34, 778–802 (1970)

    MathSciNet  MATH  Google Scholar 

  12. Danilov, V.I., Gizatullin, M.H.: Automorphisms of affine surfaces. II (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 41(1), 54–103, 231 (1977)

  13. Forstnerič F., Rosay J.P.: Approximation of biholomorphic mappings by automorphisms of \({\mathbb{C}^n}\). Invent. Math. 112(2), 323–349 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations. Invariant Theory and Algebraic Tranformation Groups VII. Encyclopaedia of Mathematical Sciences, vol. 136. Springer, Berlin (2006)

  15. Flenner H., Kaliman S., Zaidenberg M.: On the Danilov–Gizatullin isomorphism theorem. Enseign. Math. (2) 55(3–4), 275–283 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Hartshorne R.: Algebraic Geometry, pp. 496. Springer, New York (1977)

    MATH  Google Scholar 

  17. Kaliman S., Kutzschebauch F.: Criteria for the density property of complex manifolds. Invent. Math. 172(1), 71–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaliman S., Kutzschebauch F.: Density property for hypersurfaces \({UV=P(\overline X)}\). Math. Z. 258(1), 115–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaliman, S., Kutzschebauch, F.: On the present state of the Andersén–Lempert theory. (2010) arXiv:1003.3434v1

  20. Kytmanov A.A.: Integral representations and volume forms on hirzebruch surfaces. J. Sib. Fed. Univ. Math. Phys. 1:2, 125–132 (2008)

    Google Scholar 

  21. Mumford D.: Geometric Invariant Theory. Springer, Berlin (1965)

    MATH  Google Scholar 

  22. Varolin D.: The density property of complex manifolds and geometric structures. J. Geom. Anal. 11(1), 135–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Toth A., Varolin D.: Holomorphic diffeomorphisms of semisimple homogeneous spaces. Compos. Math. 142(5), 1308–1326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Varolin D.: The density property of complex manifolds and geometric structures. II. Int. J. Math. 11(6), 837–847 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Varolin D.: A general notion of shears, and applications. Mich. Math. J. 46(3), 533–553 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Donzelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donzelli, F. Algebraic density property of Danilov–Gizatullin surfaces. Math. Z. 272, 1187–1194 (2012). https://doi.org/10.1007/s00209-012-0982-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-0982-3

Keywords

Mathematics Subject Classification (2000)

Navigation