Skip to main content
Log in

Density property for hypersurfaces \(UV = P({\bar X})\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study hypersurfaces of \({\mathbb{C}}^{n+2}_{{\bar x},u,v}\) given by equations of form \(UV = P({\bar X})\) where the zero locus of a polynomial p is smooth reduced. The main result says that the Lie algebra generated by algebraic completely integrable vector fields on such a hypersurface coincides with the Lie algebra of all algebraic vector fields. Consequences of this result for some conjectures of affine algebraic geometry and for the Oka-Grauert-Gromov principle are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersén E. (1990) Volume-preserving automorphisms of \({\mathbb{C}}^n\) . Complex Var. Theory Appl. 14(1–4): 223–235

    MATH  Google Scholar 

  2. Alexander H. (1977) Explicit imbedding of the (punctured) disc into \({\mathbb{C}}^2\) . Comm. Math. Helv. 52, 539–544

    Article  MATH  Google Scholar 

  3. Andersén E., Lempert L. (1992) On the group of holomorphic automorphisms of \({\mathbb{C}}^n\) . Invent. Math. 110(2), 371–388

    Article  MATH  MathSciNet  Google Scholar 

  4. Abhyankar S.S., Moh T.T. (1975) Embeddings of the line in the plane. J. Reine Angew. Math. 276: 148–166

    MATH  MathSciNet  Google Scholar 

  5. Borell S., Kutzschebauch F., Non-equivalent embeddings into complex Euclidean spaces. Int. J. Math. (to appear)

  6. Choudary A.D.R., Dimca A. (1994) Complex hypersurfaces diffeomorphic to affine spaces. Kodai Math. J. 17(2): 171–178

    Article  MATH  MathSciNet  Google Scholar 

  7. Derksen H., Kutzschebauch F. (1998) Nonlinearizable holomorphic group actions. Math. Ann. 311(1): 41–53

    Article  MATH  MathSciNet  Google Scholar 

  8. Derksen H., Kutzschebauch F. (1999) Global holomorphic linearization of actions of compact Lie groups on \({\mathbb{C}}^n\) . Contemp. Math. 222: 201–210

    MathSciNet  Google Scholar 

  9. Derksen H., Kutzschebauch F., Winkelmann J. (1999) Subvarieties of \({\mathbb{C}}^n\) with non-extendable automorphisms. J. Reine Angew. Math. 508: 213–235

    MATH  MathSciNet  Google Scholar 

  10. tom Dieck T., Petrie T. (1993) Homology planes and algebraic curves. Osaka J. Math. 30(4): 855–886

    MATH  MathSciNet  Google Scholar 

  11. Forstneric F., Globevnik J., Rosay J.-P. (1996) Nonstraightenable complex lines in \({\mathbb{C}}^2\) . Ark.Mat. 34(1): 97–10

    Article  MATH  MathSciNet  Google Scholar 

  12. Forstnerič F., Prezelj J. (2000) Oka’s principle for holomorphic fiber bundles with sprays. Math. Ann. 317(1): 117–154

    Article  MathSciNet  MATH  Google Scholar 

  13. Forstnerič F., Prezelj J. (2002) Oka’s principle for holomorphic submersions with sprays. Math. Ann. 322(4): 633–666

    Article  MathSciNet  MATH  Google Scholar 

  14. Forstnerič F., Rosay J.-P. (1993) Approximation of biholomorphic mappings by automorphisms of \({\mathbb{C}}^n\) . Invent. Math. 112(2): 323–349

    Article  MathSciNet  MATH  Google Scholar 

  15. Forster O., Ramspott K.J. (1966) Analytische Modulgarben und Endromisbündel. Invent. Math. 2, 145–170

    Article  MATH  MathSciNet  Google Scholar 

  16. Globevnik J. (2002) On growth of holomorphic embeddings into \({\mathbb{C}}^2\) . Proc. R. Soc. Edinburgh Sect. A 132(4): 879–889

    Article  MATH  MathSciNet  Google Scholar 

  17. Grauert H. (1957) Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen. Math. Ann. 133: 450–472

    Article  MATH  MathSciNet  Google Scholar 

  18. Gromov M. (1989) Oka’s principle for holomorphic sections of elliptic bundles. JAMS 2(4): 851–897

    Article  MATH  MathSciNet  Google Scholar 

  19. Kaliman, S.: Isotopic embeddings of affine algebraic varieties into \({\mathbb{C}}^n\) . In: The Madison Symposium on Complex Analysis (Madison, WI, 1991), Contemp. Math. vol. 137, pp. 291–295. Am. Math. Soc., Providence, RI (1992)

  20. Kaliman S. (1994) Exotic analytic structures and Eisenman intrinsic measures. Israel Math. J. 88: 411–423

    Article  MATH  MathSciNet  Google Scholar 

  21. Kaliman S., Zaidenberg M. (1999) Affine modifications and affine hypersurfaces with a very transitive automorphism group. Trans. Groups 4: 53–95

    Article  MATH  MathSciNet  Google Scholar 

  22. Kaliman, S., Kutzschebauch, F.: Criteria for the density property of complex manifolds (preprint)

  23. Kasahara K., Nishino T. (1969) As announced in Math Reviews 38: 4721

    Google Scholar 

  24. Kobayashi, Sh., Nomizu, K.: Foundations of differential geometry, vol. I. Reprint of the 1963 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley, New York (1996)

  25. Makar-Limanov L. (1996) On the hypersurface x + x 2 y + z 2 + t 3 = 0 in \({\mathbb{C}}^4\) or a \({\mathbb{C}}^3\) -like threefold which is not \({\mathbb{C}}^3\) . Israel J. Math. Part B 96: 419–429

    MATH  MathSciNet  Google Scholar 

  26. Oka K. (1939) Sur les fonctions des plusieurs variables. III: Deuxiéme probléme de Cousin. J. Sci. Hiroshima Univ. 9: 7–19

    MATH  MathSciNet  Google Scholar 

  27. Schneider M. (1984) On the number of equations needed to describe a variety. Proc. Symp. Pure Math. 41: 163–180

    Google Scholar 

  28. Suzuki M. (1974) Propiétés topologiques des polynômes de deux variables complexes, et automorphismes algébrigue de l’espace \({\mathbb{C}}^2\) . J. Math. Soc. Jpn. 26: 241–257

    MATH  Google Scholar 

  29. Tóth A., Varolin D. (2000) Holomorphic diffeomorphisms of complex semisimple Lie groups. Invent. Math. 139(2): 351–369

    Article  MATH  MathSciNet  Google Scholar 

  30. Tóth A., Varolin D. (2006) Holomorphic diffeomorphisms of semisimple homogenous spaces. Compos. Math. 142(5): 1308–1326

    Article  MATH  MathSciNet  Google Scholar 

  31. Varolin D. (1999) A General Notion of Shears, and Applications. Mich. Math. J. 46(3): 533–553

    Article  MATH  MathSciNet  Google Scholar 

  32. Varolin D. (2001) The density property for complex manifolds and geometric structures. J. Geom. Anal. 11(1): 135–160

    MATH  MathSciNet  Google Scholar 

  33. Varolin D. (2000) The density property for complex manifolds and geometric structures II. Int. J. Math. 11(6): 837–847

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulim Kaliman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaliman, S., Kutzschebauch, F. Density property for hypersurfaces \(UV = P({\bar X})\) . Math. Z. 258, 115–131 (2008). https://doi.org/10.1007/s00209-007-0162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0162-z

Keywords

Mathematics Subject Classification (2000)

Navigation