Skip to main content
Log in

A Faber-Krahn inequality for Robin problems in any space dimension

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove a Faber-Krahn inequality for the first eigenvalue of the Laplacian with Robin boundary conditions, asserting that amongst all Lipschitz domains of fixed volume, the ball has the smallest first eigenvalue. We prove the result in all space dimensions using ideas from [M.-H. Bossel, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), 47–50], where a proof for smooth domains in the plane was given. The method does not involve the use of symmetrisation arguments. The results also imply variants of the Cheeger inequality for the first eigenvalue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math. 15, 119–147 (1962)

    MATH  MathSciNet  Google Scholar 

  2. Ahlfors, L.V.: Conformal invariants: topics in geometric function theory. McGraw-Hill Book Co., New York (1973)

  3. Arendt, W., Warma, M.: The Laplacian with Robin boundary conditions on arbitrary domains. Potential Anal. 19(4), 341–363 (2003). DOI 10.1023/A:1024181608863

    Article  MathSciNet  Google Scholar 

  4. Bandle, C.: Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7. Pitman, Boston, Mass. (1980)

  5. Bossel, M.H.: Longueurs extrémales et fonctionnelles de domaine. Complex Variables Theory Appl. 6(2–4), 203–234 (1986)

    Google Scholar 

  6. Bossel, M.H.: Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. 302(1), 47–50 (1986)

    MathSciNet  Google Scholar 

  7. Bossel, M.H.: Membranes élastiquement liées inhomogènes ou sur une surface: une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn. Z. Angew. Math. Phys. 39(5), 733–742 (1988)

    Article  MathSciNet  Google Scholar 

  8. Burago, Y.D., Zalgaller, V.A.: Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, vol. 285. Springer-Verlag, Berlin (1988)

  9. Dancer, E.N., Daners, D.: Domain perturbation for elliptic equations subject to Robin boundary conditions. J. Differential Equations 138(1), 86–132 (1997). DOI 10.1006/jdeq.1997.3256

    Article  MathSciNet  Google Scholar 

  10. Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc. 352(9), 4207–4236 (2000). DOI 10.1090/S0002-9947-00-02444-2

    Article  MathSciNet  Google Scholar 

  11. Daners, D.: Dirichlet problems on varying domains. J. Differential Equations 188(2), 591–624 (2003).

    Article  MathSciNet  Google Scholar 

  12. Doktor, P.: Approximation of domains with Lipschitzian boundary. Časopis Pěst. Mat. 101(3), 237–255 (1976)

    MathSciNet  Google Scholar 

  13. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

  14. Faber, G.: Beweis dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitzungsbericht der bayrischen Akademie der Wissenschaften pp. 169–172 (1923)

  15. Federer, H.: Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer-Verlag New York Inc., New York (1969)

  16. Fraenkel, L.E.: An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, vol. 128. Cambridge University Press, Cambridge (2000)

  17. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, vol. 224, second edn. Springer-Verlag, Berlin (1983)

  18. Henrot, A.: Minimization problems for eigenvalues of the Laplacian. J. Evol. Equ. 3(3), 443–461 (2003).

    Article  MathSciNet  Google Scholar 

  19. Hersch, J.: Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum. Z. Angew. Math. Phys. 11, 387–413 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hirsch, M.W.: Differential topology, Graduate Texts in Mathematics, vol. 33. Springer-Verlag, New York (1976)

  21. Kawohl, B.: Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150. Springer-Verlag, Berlin (1985)

  22. Krahn, E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94, 97–100 (1924)

    Article  MathSciNet  Google Scholar 

  23. Lax, P.D., Phillips, R.S.: On the scattering frequencies of the Laplace operator for exterior domains. Comm. Pure Appl. Math. 25, 85–101 (1972)

    MATH  MathSciNet  Google Scholar 

  24. Maz'ja, V.G.: Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). Translated from the Russian by T. O. Shaposhnikova

  25. Nečas, J.: On domains of type . Czechoslovak Math. J. 12(87), 274–287 (1962)

    Google Scholar 

  26. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967)

  27. Osserman, R.: The isoperimetric inequality. Bull. Amer. Math. Soc. 84(6), 1182–1238 (1978)

    Article  MathSciNet  Google Scholar 

  28. Payne, L.E.: Isoperimetric inequalities and their applications. SIAM Rev. 9, 453–488 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  29. Payne, L.E., Weinberger, H.F.: Lower bounds for vibration frequencies of elastically supported membranes and plates. SIAM J. 5, 171–182 (1957)

    MATH  Google Scholar 

  30. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, no. 27. Princeton University Press, Princeton, N. J. (1951)

  31. Rudin, W.: Real and Complex Analysis, 2nd edn. McGraw-Hill Inc., New York (1974)

  32. Sperb, R.: Bounds for the first eigenvalue of the elastically supported membrane on convex domains. Z. Angew. Math. Phys. 54(5), 879–903 (2003)

    Article  MathSciNet  Google Scholar 

  33. Sperb, R.P.: Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran. Z. Angew. Math. Phys. 23, 231–244 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sperb, R.P.: An isoperimetric inequality for the first eigenvalue of the Laplacian under Robin boundary conditions. In: W. Walter (ed.) General Inequalities 6, International Series of Numerical Mathematics, vol. 103, pp. 361–367. Birkhäuser, Basel (1992)

  35. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge, England (1944)

  36. Whitney, H.: A function not constant on a connected set of critical points. Duke Math. J. 1, 514–517 (1935)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Daners.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daners, D. A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335, 767–785 (2006). https://doi.org/10.1007/s00208-006-0753-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0753-8

Keywords

Navigation