Skip to main content
Log in

Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum

  • Articles Originaux
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Summary

The starting point of the present paper is a simple method ofPayne-Weinberger to obtain lower bounds for the first eigenvalue of a membrane through comparison with the Rayleigh principle for homogeneous strings. A generalization of this idea to auxiliary non-homogeneous strings leads to a maximum principle (7) (of which an inequality ofBarta-Pólya is a special case) or (7′); in its form (8), it was essentially known (although with some unnecessary restrictive hypotheses) toM. H. Protter in 1958. — This principle is closely related to theThomson principle of boundary value problems; in particular, the allowed discontinuities of the concurrent vector fields (in the formulation (7′)) are the same as inThomson's principle.—Someapplications of the principle to the calculation of rather sharp lower bounds are indicated, as well as an intuitivephysical interpretation (in terms of variation of masses and constraints). It is valid inthree dimensions as well; we indicate its extension toSchrödinger's equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  1. R. Courant etD. Hilbert,Methoden der mathematischen Physik, Vol. I (Springer, Berlin 1931).

    Google Scholar 

  2. J. Hersch,Une interprétation du principe de Thomson et son analogue pour la fréquence fondamentale d'une membrane. Application. C. R. Acad. Sci. Paris248, 2060 (1959).

    Google Scholar 

  3. J. Hersch,Un principe de maximum pour la fréquence fondamentale d'une membrane. C. R. Acad. Sci. Paris249, 1074 (1959).

    Google Scholar 

  4. J. Hersch,Sur quelques principes extrémaux de la physique mathématique. (Leçon inaugurale à I'E.P.F.) «L'Enseignement Mathématique», 2e série,5, 249–257 (1959).

    Google Scholar 

  5. W. Hooker etM. H. Protter,Bounds for the first eigenvalue of a rhombic membrane. Tech. Report No. 3, AFOSR Univ. of California, Berkeley (1959).

    Google Scholar 

  6. L. E. Payne etH. F. Weinberger,Lower bounds for vibration frequencies of elastically supported membranes and plates. J. Soc. Indust. Appl. Math.5, 171–182 (1957).

    Google Scholar 

  7. G. Pólya etM. Schiffer,Convexity of functionals by transplantation. J. d'Anal. Math.3, 2e partie, 245–345, Jérusalem (1953/54).

    Google Scholar 

  8. G. Pólya etG. Szegö,Isoperimetric inequalities in mathematical physics. Princeton University Press (1951).

  9. M. H. Protter,Lower bounds for the first eigenvalue of elliptic equations and related topics. Tech. Report No. 8, AFOSR, Univ. of California, Berkeley (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hersch, J. Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum. Journal of Applied Mathematics and Physics (ZAMP) 11, 387–413 (1960). https://doi.org/10.1007/BF01604498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01604498

Navigation