Skip to main content
Log in

Heat escape

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

We study non-uniqueness of nonnegative solutions of the Cauchy or Dirichlet problem for parabolic equations on domains which are not relatively compact in Riemannian manifolds. By introducing the notion of heat escape, we give a general and sharp sufficient condition for the non-uniqueness: If there is a heat escape, then the Cauchy problem (or Dirichlet problem) has a positive solution with zero initial value (or zero initial-boundary value). We also show, under a general and sharp condition, uniqueness of nonnegative solutions to the Dirichlet problem for parabolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armitage, D.H., Gardiner, S.J.: Classical Potential Theory. Springer-Verlag, London, 2001

  2. Agmon, S.: On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds. In: Methods of functional analysis and theory of elliptic equations, D. Greco (ed), Liguori Editore Naples, 1982, pp. 19–52

  3. Aikawa, H.: Norm estimate of Green operator, perturbation of Green function and integrability of superharmonic functions. Math. Ann. 312, 289–318 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Aikawa, H., Murata, M.: Generalized Cranston-McConnell inequalities and Martin boundaries of unbounded domains. J. Analyse Math. 69, 137–152 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Ancona, A.: First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains. J. Analyse Math. 72, 45–92 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Ancona, A., Taylor, J.C.: Some remarks on Widder's theorem and uniqueness of isolated singularities for parabolic equations. In: Partial differential equations with minimal smoothness and applications, B. Dahlberg, et al., (eds). Springer-Verlag, New York, 1992, pp. 15–23

  7. Aronson, D.G.: Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 607–694 (1968)

    MATH  Google Scholar 

  8. Aronson, D.G., Besala, P.: Uniqueness of solutions of the Cauchy problem for parabolic equations. J. Math. Anal. Appl. 13, 516–526 (1966)

    MATH  Google Scholar 

  9. Aronson, D.G., Besala, P.: Uniqueness of positive solutions of parabolic equations with unbounded coefficients. Colloq. Math. 18, 126–135 (1967)

    Google Scholar 

  10. Aronson, D.G., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Rat. Mech. Anal. 25, 81–122 (1967)

    MATH  Google Scholar 

  11. Azencott, R.: Behavior of diffusion semi-groups at infinity. Bull. Soc. Math. France 102, 193–240 (1974)

    MATH  Google Scholar 

  12. Davies, E.B.: L 1 properties of second order elliptic operators. Bull. London Math. Soc. 17, 417–436 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Univ. Press, Cambridge, 1989

  14. Dodziuk, J.: Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32, 703–716 (1983)

    MathSciNet  MATH  Google Scholar 

  15. Donnelly, H.: Uniqueness of the positive solutions of the heat equation. Proc. Amer. Math. Soc. 99, 353–356 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Eidus, D., Kamin, S.: The filtration equation in a class of functions decreasing at infinity. Proc. Amer. Math. Soc. 120, 825–830 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Feller, W.: The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55, 468–519 (1952)

    MathSciNet  MATH  Google Scholar 

  18. Fabes, E.B., Stroock, D.W.: A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash. Arch. Rat. Mech. Anal. 96, 327–338 (1986)

    MathSciNet  MATH  Google Scholar 

  19. Grigor'yan, A., Hansen, W.: A Liouville property for Schrödinger operators. Math. Ann. 312, 659–716 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Grigor'yan, A.: On stochastically complete manifolds. Soviet Math. Dokl. 34, 310–313 (1987)

    MATH  Google Scholar 

  21. Grigor'yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36, 135–249 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Grigor'yan, A.: Estimates of heat kernels on Riemannian manifolds. In: Spectral theory and geometry, London Math. Soc. Lecture Note Ser. vol. 273, B. Davies et al., (eds). Cambridge Univ. Press, Cambridge, 1999, pp. 140–225

  23. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1977

  24. Helms, L.L.: Introduction to Potential Theory. Wiley-Interscience, New York, 1969

  25. Il'n, A.M., Kalashnikov, A.S., Oleinik, O.A.: Linear equations of the second order of parabolic type. Russian Math. Surveys 17, 1–144 (1972)

    Google Scholar 

  26. Ishige, K., Murata, M.: An intrinsic metric approach to uniqueness of the positive Cauchy problem for parabolic equations. Math. Z. 227, 313–335 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Ishige, K., Murata, M.: Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains. Ann. Scuola Norm. Sup. Pisa XXX, 171–223 (2001)

    Google Scholar 

  28. Ishige, K.: On the behavior of the solutions of degenerate parabolic equations. Nagoya Math. J. 155, 1–26 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Ishige, K.: An intrinsic metric approach to uniqueness of the positive Dirichlet problem for parabolic equations in cylinders. J. Diff. Eq. 158, 251–290 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Khas'minskii, R.Z.: Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations. Theory of Prob. Appl. 5, 179–196 (1960)

    Google Scholar 

  31. Koranyi, A., Taylor, J.C.: Minimal solutions of the heat equations and uniqueness of the positive Cauchy problem on homogeneous spaces. Proc. Amer. Math. Soc. 94, 273–278 (1985)

    MathSciNet  MATH  Google Scholar 

  32. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications. vol. I, Springer-Verlag, Berlin-Heidelberg-New York, 1972

  33. Lin, V., Pinchover, Y.: Manifolds with group actions and elliptic operators. Memoirs Amer. Math. Soc. 112 540 (1994)

    Google Scholar 

  34. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    MathSciNet  Google Scholar 

  35. Moser, J.: A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17, 101–134 (1964)

    MATH  Google Scholar 

  36. Murata, M.: Structure of positive solutions to (-△+V)u=0 in ℝn. Duke Math. J 53, 869–943 (1986)

    MathSciNet  MATH  Google Scholar 

  37. Murata, M.: Uniform restricted parabolic Harnack inequality, separation principle, and ultra- contractivity for parabolic equations. In: Functional analysis and related topics, 1991, Lecture Notes in Math. vol.1540 H. Komatsu (ed). Springer-Verlag, Berlin, 1993, pp. 277–285

  38. Murata, M.: Non-uniqueness of the positive Cauchy problem for parabolic equations. J. Diff. Eq. 123, 343–387 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Murata, M.: Sufficient condition for non-uniqueness of the positive Cauchy problem for parabolic equations. In: Spectral and scattering theory and applications, advanced Studies in Pure Math. vol. 23, Kinokuniya, Tokyo, 1994, pp. 275–282

  40. Murata, M.: Uniqueness and non-uniqueness of the positive Cauchy problem for the heat equation on Riemannian manifolds. Proc. Amer. Math. Soc. 123, 1923–1932 (1995)

    MathSciNet  MATH  Google Scholar 

  41. Murata, M.: Non-uniqueness of the positive Dirichlet problem for parabolic equations in cylinders. J. Func. Anal. 135, 456–487 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Murata, M.: Semismall perturbations in the Martin theory for elliptic equations. Israel J. Math. 102, 29–60 (1997)

    MathSciNet  MATH  Google Scholar 

  43. Murata, M.: Martin boundaries of elliptic skew products, semismall perturbations, and fundamental solutions of parabolic equations. J. Funct. Anal. 194, 53–141 (2002)

    MATH  Google Scholar 

  44. Pinchover, Y.: On uniqueness and nonuniqueness of positive Cauchy problem for parabolic equations with unbounded coefficients. Math. Z. 233, 569–586 (1996)

    MathSciNet  Google Scholar 

  45. Pinsky, R.G.: Positive Harmonic Functions and Diffusion. Cambridge Univ. Press, Cambridge, 1995

  46. Perel'muter, M.A., Semenov, Y.U.A.: Elliptic operators preserving probability. Theory of Probability and Its Applications 32, 718–721 (1987)

    MATH  Google Scholar 

  47. Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Diff. Geom. 36, 417–450 (1992)

    MathSciNet  MATH  Google Scholar 

  48. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequality. Duke Math. J., I. M. R. N. 2, 27–38 (1992)

    Google Scholar 

  49. Saloff-Coste, L.: Parabolic Harnack inequality for divergence form second order differential operators. Potential Analysis 4, 429–467 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

    MATH  Google Scholar 

  51. Sturm, K.-Th.: Analysis on local Dirichlet spaces-I. Recurrence, conservativeness and L p-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    Google Scholar 

  52. Sturm, K.-Th.: Analysis on local Dirichlet spaces-II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32, 275–312 (1995)

    Google Scholar 

  53. Sturm, K.-Th.: Analysis on local Dirichlet spaces-III. Poincaré and parabolic Harnack inequality. J. Math. Pures Appl. IX. Ser. 75, 273–297 (1996)

    Google Scholar 

  54. Täcklind: Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique. Nova Acta Regiae Soc. Scien. Upsaliensis, Ser. IX 10, 1–57 (1936)

    Google Scholar 

  55. Widder, D.V.: Positive temperatures on an infinite rod. Trans. Amer. Math. Soc. 55, 85–95 (1944)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Murata.

Additional information

Mathematics Subject Classification (1991): 31C12, 35K20, 35J25, 35K15, 58G11, 58G03, 31C05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, M. Heat escape. Math. Ann. 327, 203–226 (2003). https://doi.org/10.1007/s00208-002-0381-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-002-0381-x

Keywords

Navigation