Skip to main content
Log in

Lipschitz Metric for the Novikov Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the Lipschitz continuous dependence of solutions for the Novikov equation with respect to the initial data. In particular, we construct a Finsler type optimal transport metric which renders the solution map Lipschitz continuous on bounded sets of \({H^1(\mathbb{R})\cap W^{1,4}(\mathbb{R})}\), although it is not Lipschitz continuous under the natural Sobolev metric from an energy law due to the finite time gradient blowup. By an application of Thom’s transversality theorem, we also prove that when the initial data is in an open dense subset of \({H^1(\mathbb{R})\cap W^{1,4}(\mathbb{R})}\), the solution is piecewise smooth. This generic regularity result helps us extend the Lipschitz continuous metric to the general weak solutions. Our method of constructing the metric can be used to treat other kinds of quasi-linear equations, provided a good knowledge about the energy concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bressan, A., Chen, G.: Generic regularity of conservative solutions to a nonlinear wave equation, Ann. I. H. Poincaré–AN 34(2), 335–354 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bressan, A., Chen, G.: Lipschitz metric for a class of nonlinear wave equations, Arch. Rat. Mech. Anal. 226(3), 1303–1343, 2017

  3. Bressan A., Chen G., Zhang Q.: Uniqueness of conservative solutions to the Camassa–Holm equation via characteristics. Discret. Contin. Dynam. Syst., 35, 25–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bressan A., Constantin A.: Global conservative solutions to the Camassa–Holm equation. Arch. Rat. Mech. Anal., 183, 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressan A., Constantin A.: Global solutions to the Hunter–Saxton equations. SIAM J. Math. Anal., 37, 996–1026 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bressan A., Fonte M.: An optimal transportation metric for solutions of the Camassa–Holm equation. Methods Appl. Anal., 12, 191–220 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Bressan A., Holden H., Raynaud X.: Lipschitz metric for the Hunter–Saxton equation. J. Math. Pures Appl., 94, 68–92 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71, 1661–1664 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chen, G., Chen, R.M., Liu, Y.: Existence and uniqueness of the global conservative weak solutions for the integrable Novikov equation, to appear in Indiana U. Math. J.

  10. Chen G., Shen Y.: Existence and regularity of solutions in nonlinear wave equations. Discret. Contin. Dynam. Syst., 35, 3327–3342 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen R.M., Guo F., Liu Y., Qu C.Z.: Analysis on the blow-up of solutions to a class of integrable peakon equations. J. Funct. Anal., 270, 2343–2374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4, 47–66, 1981/1982

  13. Holden H., Raynaud X.: Global conservative solutions of the Camassa–Holm equation–Lagrangian point of view. Commun. Partial Differ. Equ., 32, 1511–1549 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grunert K., Holden H., Raynaud X.: Lipschitz metric for the periodic Camassa–Holm equation. J. Differ. Equ., 250, 1460–1492 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Grunert K., Holden H., Raynaud X.: Lipschitz metric for the Camassa–Holm equation on the line. Discret. Contin. Dyn. Syst., 33, 2809–2827 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hone A.N.W., Lundmark H., Szmigielski J.: Explicit multipeakon solutions of Novikovs cubically nonlinear integrable Camassa–Holm type equation. Dyn. PDEs, 6, 253–289 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Hone A.N.W., Wang J.: Integrable peakon equations with cubic nonlinearity. J. Phys. A, 37, 372002 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, Z., Ni, L.: Blow-up phenomenon for the integrable Novikov equation, preprint

  19. Kardell M.: Peakon–antipeakon solutions of the Novikov equation, Thesis

  20. Li, M.J., Zhang, Q.T.: Generic regularity of conservative solutions to Camassa–Holm type equations. 2015. hal-01202927.

  21. Novikov V.: Generalizations of the Camassa–Holm type equation. J. Phys. A, 42, 342002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Villani C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Ming Chen.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Chen, G., Chen, R.M. et al. Lipschitz Metric for the Novikov Equation. Arch Rational Mech Anal 229, 1091–1137 (2018). https://doi.org/10.1007/s00205-018-1234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1234-4

Navigation