Skip to main content
Log in

Existence and Uniqueness of Local Regular Solution to the Schrödinger Flow from a Bounded Domain in \({\mathbb {R}}^3\) into \({\mathbb {S}}^2\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we show the existence and uniqueness of local regular solutions to the initial-Neumann boundary value problem of the Schrödinger flow from a smooth bounded domain \(\Omega \subset \mathbb {R}^3\) into \(\mathbb {S}^2\)(namely Landau–Lifshitz equation without dissipation). The proof is built on a parabolic perturbation method, an intrinsic geometric energy argument, the symmetric (algebraic) properties of \({\mathbb {S}}^2\) and some observations on the behaviors of some geometric quantities on the boundary of the domain manifold.It is based on methods from Ding and Wang (one of the authors of this paper) for the Schrödinger flows of maps from a closed Riemannian manifold into a Kähler manifold as well as on methods by Carbou and Jizzini for solutions of the Landau–Lifshitz equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alouges, F., Soyeur, A.: On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18(11), 1071–1084 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bejenaru, I.: On Schrödinger maps. Am. J. Math. 130(4), 1033–1065 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bejenaru, I.: Global results for Schrödinger maps in dimensions \(n\ge 3\). Commun. Partial Differ. Equ. 33(1–3), 451–477 (2008)

    Article  MATH  Google Scholar 

  4. Bejenaru, I., Ionescu, A.D., Kenig, C.E.: Global existence and uniqueness of Schrödinger maps in dimensions \(n\ge 4\). Adv. Math. 215(1), 263–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Global Schrödinger maps in dimensions \(n\ge 2\): small data in the critical Sobolev spaces. Ann. Math. 173(3), 1443–1506 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bejenaru, I., Tataru, D.: Global wellposedness in the energy space for the Maxwell–Schrödinger system. Commun. Math. Phys. 288, 145–198 (2009)

    Article  ADS  MATH  Google Scholar 

  7. Bonithon, G.: Landau–Lifschitz–Gilbert equation with applied electric current. Discrete Contin. Dyn. Syst. Dynamical Systems and Differential Equations, Proceedings of the 6th AIMS International Conference, suppl., pp. 138–144 (2007)

  8. Boyer, F., Fabrie, P.: Mathematical tools for the study of the incompressible Navier–Stokes equations and related models. Applied Mathematical Sciences, 183. Springer, New York (2013)

  9. Chen, Y.-Z.: Second Order Parabolic Differential Equations. Peking University Press, Beijing (2003)

    Google Scholar 

  10. Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in a bounded domain. Differ. Integral Equ. 14(2), 213–229 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Carbou, G., Jizzini, R.: Very regular solutions for the Landau–Lifschitz equation with electric current. Chin. Ann. Math. Ser. B 39(5), 889–916 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Q., Jost, J., Wang, G.: The maximum principle and the Dirichlet problem for Dirac-harmonic maps. Calc. Var. Partial Differ. Equ. 47(1–2), 87–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, N.-H., Shatah, J., Uhlenbeck, K.: Schrödinger maps. Commun. Pure Appl. Math. 53(5), 590–602 (2000)

    Article  MATH  Google Scholar 

  14. Chen B., Wang, Y.-D.: Very regular solution to Landau–Lifshitz–Gilbert system with spin-polarized transport. Front. Math. China, to appear (2023)

  15. Chen B., Wang, Y.-D.: Smooth local solutions to the Schrödinger flow for maps from a smooth bounded domain \(\Omega \subset {\mathbb{R}}^3\) into \({\mathbb{S}}^2\). arXiv:2111.14835

  16. Chern, A., Knöppel, F., Pinkall, U., Schröder P., Wei\(\beta \)mann, S.: Schrödinger’s Smoke. ACM Trans. Graph. 35(4), Article 77, 13 pages (2016)

  17. Ding, W.-Y., Tang, H.-Y., Zeng, C.-C.: Self-similar solutions of Schrödinger flows. Calc. Var. Partial Differ. Equ. 34(2), 267–277 (2009)

    Article  MATH  Google Scholar 

  18. Ding, W.-Y., Wang, Y.-D.: Local Schrödinger flow into Kähler manifolds. Sci. China Ser. A 44(11), 1446–1464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding W.-Y., Wang, Y.-D.: Schrödinger flow of maps into symplectic manifolds. Sci. China Ser. A 41(7), 746–755 (1998)

  20. Ding, W.-Y., Wang H.-Y., Wang, Y.-D.: Schrödinger flows on compact Hermitian symmetric spaces and related problems. Acta Math. Sin. (Engl. Ser.) 19(2), 303–312 (2003)

  21. Germain, P., Shatah, J., Zeng, C.-C.: Self-similar solutions for the Schrödinger map equation. Math. Z. 264(3), 697–707 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gilbert, T.L.: A Lagrangian formulation of gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243–1255 (1955)

    Google Scholar 

  23. Huang, J.-X.: Local existence and uniqueness of Navier–Stokes–Schrödinger system. Commun. Math. Stat. 9(1), 101–118 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ionescu, A.D., Kenig, C.E.: Low-regularity Schrödinger maps. II. Global well-posedness in dimensions \(d \ge 3\). Commun. Math. Phys. 271(2), 523–559 (2007)

  25. Jia, Z.-L., Wang, Y.-D.: Global weak solutions to Landau–Lifshitz equations into compact Lie algebras. Front. Math. China 14(6), 1163–1196 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jia, Z.-L., Wang, Y.-D.: Global weak solutions to Landau–Lifshtiz systems with spin-polarized transport. Discrete Contin. Dyn. Syst. 40(3), 1903–1935 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kenig, C.E., Lamm, T., Pollack, D., Staffilani, G., Toro, T.: The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete Contin. Dyn. Syst. 27(2), 389–439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Landau, L.D., Lifshitz, E.M.: On the theory of dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sov. 8, 153–169 (1935)

    MATH  Google Scholar 

  29. Li, Z.: Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces: high dimensions. J. Funct. Anal. 281(6), Paper No.109093, 76 pp (2021)

  30. Li, Z.: Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces: energy critical case. arXiv:1811.10924

  31. Lin, F.-H., Wei, J.: Traveling wave solutions of the Schrödinger map equation. Commun. Pure Appl. Math. 63(12), 1585–1621 (2010)

    Article  MATH  Google Scholar 

  32. McGahgan, H.: An approximation scheme for Schrödinger maps. Commun. Partial Differ. Equ. 32(1–3), 375–400 (2007)

    Article  Google Scholar 

  33. Merle, F., Raphaël, P., Rodnianski, I.: Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math. 193(2), 249–365 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Nahmod, A., Shatah, J., Vega, L., Zeng, C.-C.: Schrödinger maps and their associated frame systems. Int. Math. Res. Not. IMRN 2007, no. 21, 29 pp (2007)

  35. Nahmod, A., Stefanov, A., Uhlenbeck, K.: On Schrödinger maps. Commun. Pure Appl. Math. 56(1), 114–151 (2003)

    Article  MATH  Google Scholar 

  36. Pang, P.Y.H., Wang, H.-Y., Wang, Y.-D.: Schrödinger flow on Hermitian locally symmetric spaces. Comm. Anal. Geom. 10(4), 653–681 (2002)

  37. Pang, P.Y.H., Wang, H.-Y., Wang, Y.-D.: Schrödinger flow for maps into Kähler manifolds. Asian J. Math. 5(3), 509–533 (2001)

  38. Pang, P.Y.H., Wang, H.-Y., Wang, Y.-D.: Local existence for inhomogeneous Schrödinger flow into Kähler manifolds. Acta Math. Sin. (Engl. Ser.) 16(3), 487–504 (2000)

  39. Rodnianski, I., Rubinstein, Y., Staffilani, G.: On the global well-posedness of the one-dimensional Schrödinger map flow. Anal. PDE 2(2), 187–209 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Santugini-Repiquet, K.: Solutions to the Landau–Lifshitz system with nonhomogenous Neumann boundary conditions arising from surface anisotropy and super-exchange interactions in a ferromagnetic media. Nonlinear Anal. 65(1), 129–158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Simon, J.: Compact sets in the space \(L^p([0, T];B)\). Ann. Mat. Pura. Appl. 4(146), 65–96 (1987)

    MATH  Google Scholar 

  42. Slonczewski, J.C.: Force, momentum and topology of a moving magnetic domain. J. Magn. Magn. Mater. 12, 108–122 (1979)

    Article  ADS  Google Scholar 

  43. Song, C.: Local existence and uniqueness of skew mean curvature flow. J. Reine Angew. Math. 776, 1–26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. Song, C., Wang, Y.-D.: Uniqueness of Schrödinger flow on manifolds. Commun. Anal. Geom. 26(1), 217–235 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sulem, P.L., Sulem, C., Bardos, C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107(3), 431–454 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Tilioua, M.: Current-induced magnetization dynamics. Global existence of weak solutions. J. Math. Anal. Appl. 373(2), 635–642 (2011)

  47. Termg, C.L., Uhlenbeck, K.: Schrödinger flows on Grassmannians, in Integrable Systems. Geometry and Topology, 235–256, AMS/IP Stud. Adv. Math. 36, American Mathematical Society, Providence, RI (2006)

  48. Visintin, A.: On Landau–Lifshitz equations for ferromagnetism. Jpn. J. Appl. Math. 2(1), 69–84 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, Y.-D.: Heisenberg chain systems from compact manifolds into \({\mathbb{S} }^2\). J. Math. Phys. 39(1), 363–371 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  50. Wei, J., Yang, J.: Traveling vortex helices for Schrödinger map equations. Trans. Am. Math. Soc. 368(4), 2589–2622 (2016)

    Article  MATH  Google Scholar 

  51. Wehrheim, K.: Uhlenbeck Compactness. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, viii+212 pp (2004)

  52. Zhou, Y., Guo, B., Tan, S.-B.: Existence and uniqueness of smooth solution for system of ferro-magnetic chain. Sci. China Ser. A 34(3), 257–266 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for helpful corrections and highly constructive suggestions which substantially improved the article. The authors are supported partially by NSFC (Grant No. 11731001). The author B. Chen is supported partially by China Postdoctoral Science Foundation (Grant No. 2021M701930). The author Y. Wang is supported partially by NSFC (Grant No. 11971400), and National Key Research and Development Projects of China (Grant No. 2020YFA0712500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youde Wang.

Ethics declarations

Conflict of interest

The authors certify that this manuscript describes original work and has not been submitted elsewhere for publication. The authors also declare that no conflict of interest exists in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bo Chen and Youde Wang have contributed equally to this work.

Appendices

Appendix A Locally Regular Estimates of \(u_\varepsilon \)

In this section, we establish the regular estimates of the solution \(v:\Omega \times [0,T]\rightarrow \mathbb {R}^3\) to the following uniform parabolic equation:

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial v}{\partial t}-\varepsilon \Delta v-u\times \Delta v=f(x, t), \quad (x,t)\in \Omega \times [0,T],\\ v(x,0)=v_0:\Omega \rightarrow \mathbb {R}^3,\quad \frac{\partial v}{\partial \nu }|_{\partial \Omega \times [0, T]}=0. \end{array}\right. } \end{aligned}$$
(A1)

where

$$\begin{aligned} u\in L^\infty ([0,T], H^3(\Omega ))\cap C^0(\Omega \times [0,T]) \end{aligned}$$
(A2)

and

$$\begin{aligned} f(x,t)\in L^{2}([0, T], H^1(\Omega )). \end{aligned}$$
(A3)

Our main result on locally regular estimates of solution v to the above equation (A1) is as follows.

Theorem A.1

Let \(v\in W^{2,1}_{2}(\Omega \times [0,T])\) is a strong solution to (A1) satisfying conditions (A2) and (A3). Then \(v\in L^\infty _{loc} ((0,T],H^2(\Omega ))\cap L^2_{loc}((0,T],H^3(\Omega ))\). Moreover, for any \(\delta >0\), there exists a positive constant \(C(\delta )\) depending on \(\Vert u\Vert _{L^\infty ([0,T], H^3(\Omega ))}\) such that there holds

$$\begin{aligned}&\Vert v\Vert _{L^2([\delta ,T],H^2(\Omega ))}+\Vert \frac{\partial v}{\partial t}\Vert _{L^{2}([\delta ,T],L^2(\Omega ))}\\&\quad \le C(\delta )\left( \Vert v\Vert _{L^2([0,T]\times \Omega )}+\Vert f\Vert _{L^2(\Omega \times [0,T])}\right) \end{aligned}$$

and

$$\begin{aligned}&\Vert v\Vert _{L^2([\delta ,T],H^3(\Omega ))}+\Vert \frac{\partial v}{\partial t}\Vert _{L^{2}([\delta ,T],H^1(\Omega ))}\\&\quad \le C(\delta )\left( \Vert v\Vert _{L^2([0,T], H^1(\Omega ))}+\Vert f\Vert _{L^2([0,T], H^1(\Omega ))}\right) . \end{aligned}$$

Proof

Let \(\eta (t)\) be a smooth cut-off function such that \(\text{ supp }\,\eta \subset (0,T]\) and \(\eta \equiv 1\) on \([\delta ,T]\) for any \(\delta >0\). Then \(\eta v\) is a strong solution of the following equation

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial \omega }{\partial t}-\varepsilon \Delta \omega -u\times \Delta \omega =\tilde{f},\quad &{}\text {(x,t)}\in \Omega \times [0,T],\\ \frac{\partial \omega }{\partial \nu }|_{\partial \Omega \times [0,T]}=0,\quad \omega (x,0)=0,\quad &{}\text {x}\in \Omega .\\ \end{array}\right. } \end{aligned}$$
(A4)

Here

$$\begin{aligned} \tilde{f}=\eta f+\frac{\partial \eta }{\partial t}v, \end{aligned}$$

it is easy to see that the assumptions in Theorem A.1 imply

$$\begin{aligned} \tilde{f}\in L^2([0,T], H^{1}(\Omega )). \end{aligned}$$

By the Galerkin approximation method, we claim that there exists a solution \(w\in L^\infty ([0,T],H^2(\Omega ))\cap L^2([0,T],H^3(\Omega ))\) to the above equation (A4). Namely, we consider the following Galerkin approximation equation to (A4)

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial \omega ^n}{\partial t}-\varepsilon \Delta \omega ^n -P_n(u\times \Delta \omega ^n)=P_n(\tilde{f}),\quad &{}\text {(x,t)}\in \Omega \times [0,T],\\ \omega ^n(x,0)=0,\quad &{}\text {x}\in \Omega ,\\ \end{array}\right. } \end{aligned}$$
(A5)

where the Galerkin projection \(P_n\) is defined in Sect.  2. By the assumptions satisfied by u and \(\tilde{f}\), one can show there exists a unique solution \(w^n(x,t)=\sum _{i=1}^{n}g_i(t)f_i(x)\) to (A5) on \(\Omega \times [0,T]\) (cf. [9]).

Then by taking \(w^n\), \(\Delta w^n\) and \(\Delta ^2 w^n\) as test functions to (A5), a simple calculation shows

$$\begin{aligned}&\frac{\partial }{\partial t}\int _{\Omega }|\omega ^n|^2dx+\varepsilon \int _{\Omega }|\nabla \omega ^n|^2dx\\&\quad \le C(\varepsilon ) \Vert u\Vert _{L^\infty ([0,T], H^3)}\int _{\Omega }|\omega ^n|^2dx+C(\varepsilon )\int _{\Omega }|\tilde{f}|^2dx,\\&\quad \frac{\partial }{\partial t}\int _{\Omega }|\nabla \omega ^n|^2dx+\varepsilon \int _{\Omega }|\Delta \omega ^n|^2dx\le C(\varepsilon )\int _{\Omega }|\tilde{f}|^2dx,\\&\quad \frac{\partial }{\partial t}\int _{\Omega }|\Delta \omega ^n|^2dx+\varepsilon \int _{\Omega }|\nabla \Delta \omega ^n|^2dx\\&\quad \le C(\varepsilon ) \Vert u\Vert _{L^\infty ([0,T], H^3)}\int _{\Omega }|\Delta \omega ^n|^2dx+C(\varepsilon )\int _{\Omega }|\nabla \tilde{f}|^2dx. \end{aligned}$$

The Gronwall inequality gives the following inequalities

$$\begin{aligned}&\sup _{0\le t\le T}\Vert w^n\Vert ^2_{H^1}+\varepsilon \int _{0}^{T}\int _{\Omega }|\Delta \omega ^n|^2dxdt\\&\quad \le C(\varepsilon , \Vert u\Vert _{L^\infty ([0,T],H^3)}, T)\int _{0}^{T}\int _{\Omega }|\tilde{f}|^2dxdt,\\ \end{aligned}$$

and

$$\begin{aligned}&\sup _{0\le t\le T}\int _{\Omega }|\Delta \omega ^n|^2dx+\varepsilon \int _{0}^{T}\int _{\Omega }|\nabla \Delta \omega ^n|^2dxdt\\&\quad \le C(\varepsilon , \Vert u\Vert _{L^\infty ([0,T],H^3)}, T)\int _{0}^{T}\int _{\Omega }|\nabla \tilde{f}|^2dxdt. \end{aligned}$$

By using Equation (A5) again and then applying Lemma 2.1, one obtains

$$\begin{aligned}&\sup _{0\le t\le T}\Vert w^n\Vert ^2_{H^1}+\varepsilon \left( \int _{0}^{T}\int _{\Omega }|\frac{\partial w^n}{\partial t}|^2dxdt+\int _{0}^{T}\Vert w^n\Vert ^2_{H^2}dt\right) \\&\quad \le C(\varepsilon , \Vert u\Vert _{L^\infty ([0,T],H^3)}, T)\int _{0}^{T}\int _{\Omega }|\tilde{f}|^2dxdt,\\&\sup _{0\le t\le T}\Vert w^n\Vert ^2_{H^2}+\varepsilon \left( \int _{0}^{T}\int _{\Omega }|\nabla \frac{\partial w^n}{\partial t}|^2dxdt+\int _{0}^{T}\Vert w^n\Vert ^2_{H^3}dt\right) \\&\quad \le C(\varepsilon , \Vert u\Vert _{L^\infty ([0,T],H^3)}, T)\int _{0}^{T}\int _{\Omega }|\tilde{f}|^2+|\nabla \tilde{f}|^2dxdt. \end{aligned}$$

Therefore by letting \(n\rightarrow \infty \), \(w^n\) converges to a solution w of (A4) as we claimed, which satisfies

$$\begin{aligned}&\Vert \omega \Vert _{L^\infty ([0, T], H^1(\Omega ))}+\Vert \omega \Vert _{L^2([0,T],H^2(\Omega ))}+\Vert \frac{\partial \omega }{\partial t}\Vert _{L^{2}([0,T],L^2(\Omega ))}\\&\quad \le C(\varepsilon )\Vert \tilde{f}\Vert _{L^2([0,T]\times \Omega )},\\&\Vert \omega \Vert _{L^\infty ([0, T], H^2(\Omega ))}+\Vert \omega \Vert _{L^2([0,T],H^3(\Omega ))}+\Vert \frac{\partial \omega }{\partial t}\Vert _{L^{2}([0,T],H^1(\Omega ))}\\&\quad \le C(\varepsilon )\Vert \tilde{f}\Vert _{L^2([0,T], H^1(\Omega ))}. \end{aligned}$$

Then the uniqueness of strong solutions to (A4) implies \(\eta v=\omega \). Therefore the desired result is proved. \(\square \)

Now, we apply the above Theorem A.1 to show the local estimates of solution \(\frac{\partial u_\varepsilon }{\partial t}\) to (3.7) which can be summarized as the following theorem.

Theorem A.2

The solution \(u_\varepsilon \) to (3.1) obtained in Theorem 3.1 satisfies

$$\begin{aligned} \frac{\partial u_\varepsilon }{\partial t}\in L^2_{loc}((0,T_\varepsilon ), H^3(\Omega )) \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 u_\varepsilon }{\partial t^2}\in L^2_{loc}((0,T_\varepsilon ), H^1(\Omega )). \end{aligned}$$

Proof

Since \(\frac{\partial u_\varepsilon }{\partial t}\) satisfies the following equation:

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial v}{\partial t}-\varepsilon \Delta v-u_\varepsilon \times \Delta v=f(u_\varepsilon , \nabla v, v),\\ v(x,0)=\frac{\partial u_\varepsilon }{\partial t}|_{t=0},\quad \frac{\partial v}{\partial t}|_{\partial \Omega \times (0, T_\varepsilon )}=0, \end{array}\right. } \end{aligned}$$
(A6)

where

$$\begin{aligned} f(u_\varepsilon , \nabla v, v)=v\times \Delta u_\varepsilon +2\varepsilon \left\langle \nabla u_\varepsilon ,\nabla v\right\rangle u_\varepsilon +\varepsilon |\nabla u_\varepsilon |^2v, \end{aligned}$$

then, by the above Theorem A.1 we need only to check that \(u_\varepsilon \) and \(f(u_\varepsilon , \nabla v,v)\) satisfies the conditions (A2) and (A3) respectively.

Since \(u_\varepsilon \in L^\infty ([0,T], H^3(\Omega ))\) and \(\frac{\partial u_\varepsilon }{\partial t}\in L^2([0,T], L^2(\Omega ))\) for all \(T<T_\varepsilon \), then (2) of Lemma 2.3 implies

$$\begin{aligned} u_{\varepsilon }\in C^0([0,T], H^2(\Omega )). \end{aligned}$$

Indeed, for any (xt) and \((x_0,t_0)\) we have

$$\begin{aligned} \begin{aligned}&|u_\varepsilon (x,t)-u_\varepsilon (x_0,t_0)|\\&\quad \le |u_\varepsilon (x,t)-u_\varepsilon (x_0,t)|+|u_\varepsilon (x_0,t)-u_\varepsilon (x_0,t_0)|\\&\quad \le \sup _{\Omega }|\nabla u_\varepsilon |(\cdot ,t)|x-x_0|+|u_\varepsilon (x_0,t)-u_\varepsilon (x_0,t_0)|\\&\quad \le C\Vert u_\varepsilon \Vert _{L^\infty ([0,T], H^3(\Omega ))}|x-x_0|+C\Vert u_\varepsilon (\cdot , t)-u_\varepsilon (\cdot , t_0)\Vert _{H^2(\Omega )}. \end{aligned} \nonumber \\ \end{aligned}$$
(A7)

This implies \(u_\varepsilon \in C^0(\Omega \times [0,T])\).

Next, we want to show \(f(u_\varepsilon ,\nabla v, v)\in L^2([0,T], H^1(\Omega ))\). A simple calculations shows

$$\begin{aligned} \int _0^T\int _{\Omega }|f|^2dxdt\le C(1+\varepsilon )(\Vert u_\varepsilon \Vert ^4_{L^\infty ([0,T], H^3)}+1)\Vert \frac{\partial u_\varepsilon }{\partial t}\Vert ^2_{L^2([0,T],H^1)}\le C(T), \end{aligned}$$

and

$$\begin{aligned} \nabla f=&\nabla \frac{\partial u_\varepsilon }{\partial t}\times \Delta u_\varepsilon +\frac{\partial u_\varepsilon }{\partial t}\times \nabla \Delta u_\varepsilon \\&+\nabla ^2\frac{\partial u_\varepsilon }{\partial t}\#\nabla u_\varepsilon \# u_\varepsilon +\nabla \frac{\partial u_\varepsilon }{\partial t}\# \nabla ^2 u_\varepsilon \# u_\varepsilon \\&+\nabla \frac{\partial u_\varepsilon }{\partial t}\# \nabla u_\varepsilon \# \nabla u_\varepsilon +\frac{ \partial u_\varepsilon }{\partial t}\# \nabla ^2 u_\varepsilon \#\nabla u_\varepsilon ,\\ \end{aligned}$$

where “\(\#\)” denotes the linear contraction. Thus, we have

$$\begin{aligned} \int _0^T\int _{\Omega }|\nabla f|^2dxdt\le C(\Vert u_\varepsilon \Vert ^4_{L^\infty ([0,T], H^3)}+1)\Vert \frac{\partial u_\varepsilon }{\partial t}\Vert _{L^2([0,T], H^2)}\le C(T). \end{aligned}$$

Here, we have used the estimate (3.2). Therefore, from Theorem A.1 we can obtain the desired results. \(\square \)

Appendix B The Schrödinger Flow in Moving Frame and Parallel Transportation

1.1 B.1 The Schrödinger flow in moving frame

Let \(\Omega \) be a smooth bounded domain in \(\mathbb {R}^3\). Suppose that \(u: \Omega \times [0,T]\rightarrow \mathbb {S}^2\) is a solution to the Schrödinger flow

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _tu =J(u)\tau (u),\quad \quad &{}\text {(x,t)}\in \Omega \times \mathbb {R}^+,\\ \frac{\partial u}{\partial \nu }=0, &{}\text {(x,t)}\in \partial \Omega \times \mathbb {R}^+,\\ u(x,0)=u_0: \Omega \rightarrow \mathbb {S}^2, \end{array}\right. } \end{aligned}$$
(B1)

where \(J(u)=u\times \). We are going to rewrite the above equation in a chosen gauge of the pull-back bundle \(u^*T\mathbb {S}^2\) over \(\Omega \times [0,T]\).

Let \(\nabla ^{\mathbb {S}^2}\) be the connection on \(\mathbb {S}^2\) and \(\nabla =u^*\nabla ^{\mathbb {S}^2}\) be the pull-back connection on \(u^*T\mathbb {S}^2\). Let \(\{x_1,x_2,x_3, t\}\) be the canonical coordinates on \(\Omega \times [0,T]\), denote \(\nabla _{t}=\nabla _{\frac{\partial }{\partial t}}\) and \(\nabla _{i}=\nabla _{\frac{\partial }{\partial x_1}}\) for \(i=1,2,3\). Recall that the tension field \(\tau (u)={{\,\textrm{tr}\,}}\nabla ^2 u=\nabla _i\nabla _i u\), we can write the equation (B1) in the form

$$\begin{aligned} \nabla _t u=J(u)\nabla _i\nabla _i u=\nabla _i(J(u)\nabla _i u). \end{aligned}$$

Furthermore, let \(\{e_\alpha \}_{\alpha =1}^2\) be a local frame of the pull-back bundle \(u^*T\mathbb {S}^2\) over \(\Omega \times [0,T]\), such that the complex structure J in this frame is reduced to \(J_0=\sqrt{-1}\). If we denote \(\phi :=\nabla u=u_i^\alpha e_\alpha \otimes dx^i\), where \(i=1,2,3\), then

$$\begin{aligned} \nabla _t u=J_0\nabla _i \phi _i \quad \text {and}\quad \nabla _t \phi =\nabla (J_0\nabla _i \phi _i), \end{aligned}$$

The Neumann condition on boundary in (B1) is equivalent to

$$\begin{aligned} \sum _{i=1}^3\phi _i\cdot \nu _i|_{\partial \Omega \times [0,T]}=0, \end{aligned}$$

where \(\nu =(\nu _1,\nu _2,\nu _3)\) is the outer normal vector of \(\partial \Omega \).

1.2 B.2 Parallel transportation and some lemmas

Let \(B\subset \mathbb {S}^2\) be an open geodesic ball with radius \(<\frac{\pi }{2}\). Then for any \(y_1,\, y_2\in B\), there exists a unique minimizing geodesic \(\gamma (s):[0,1]\rightarrow \mathbb {S}^2\) connecting \(y_1\) and \(y_2\), and let \(\mathcal {P}:T_{y_2}\mathbb {S}^2\rightarrow T_{y_1}\mathbb {S}^2\) be the linear map given by parallel transport along \(\gamma \). Let \(\{e_1(s),e_2(s)\}\) be the frame gotten by parallel transport along \(\gamma \), set \(e_\alpha (y_1)=e_\alpha (0)\) and \(e_\alpha (y_2)=e_\alpha (1)\). Then, for any \(X=X^\alpha (y_2)e_\alpha (1)\in T_{y_2}\mathbb {S}^2\), the above linear map \(\mathcal {P}\) has the following formula

$$\begin{aligned} \mathcal {P}X=X^\alpha (y_2)e_\alpha (0). \end{aligned}$$

Let \(d:\mathbb {S}^2\times \mathbb {S}^2\rightarrow \mathbb {R}\) be the distance function on \(\mathbb {S}^2\), and \(\tilde{\nabla }=\nabla ^{\mathbb {S}^2}\otimes \nabla ^{\mathbb {S}^2}\) be the product connection on \(\mathbb {S}^2\times \mathbb {S}^2\). We have the following estimates for gradient and Hessian of the distance function, whose proof can be found in [12, 43, 44].

Lemma B.1

Suppose that \(X=(X_1,X_2)\) and \(Y=(Y_1,Y_2)\) are two vectors in \(T_{y_1}\mathbb {S}^2\times T_{y_2}\mathbb {S}^2\) where \(d(y_1,y_2)<\frac{\pi }{2}\). Then, there hold true

  1. 1.

    \(\frac{1}{2}\tilde{\nabla }d^2(X)=\left\langle \gamma ^\prime (0),\mathcal {P}X_2-X_1\right\rangle \),

  2. 2.

    \(\frac{1}{2}|\tilde{\nabla }^2d^2(X,Y)|\le |\mathcal {P}X_2-X_1||\mathcal {P}Y_2-Y_1|+Cd^2(y_1,y_2)(|X_1|+|X_2|)(|Y_1|+|Y_2|)\).

On the other hand, let \(u_l:\Omega \times [0,T]\rightarrow \mathbb {S}^2\), \(l=1,2\), with

$$\begin{aligned} \sup _{\Omega \times [0,T]} d(u_1(x,t),u_2(x,t))<\frac{\pi }{2} \end{aligned}$$

and denote \(\nabla _l=u_l^*\nabla ^{\mathbb {S}^2}\). Then, for any \((x,t)\in \Omega \times [0,T]\) there exists a unique minimizing geodesic \(\gamma _{(x,t)}(s):[0,1]\rightarrow \mathbb {S}^2\) connecting \(u_1(x,t)\) and \(u_2(x,t)\). More precisely, we define a map \(U:\Omega \times [0,T]\times [0,1]\rightarrow \mathbb {S}^2\) such that \(U(x,t,s)=\gamma _{(x,t)}(s)\), then \(u_l^*T\mathbb {S}^2=U^*T\mathbb {S}^2|_{s=l-1}\) and \(\nabla _l=U^*\nabla ^{\mathbb {S}^2}|_{s=l-1}\). Therefore, we can define a global bundle isomorphism \(\mathcal {P}: u^*_2T\mathbb {S}^2 \rightarrow u^*_1T\mathbb {S}^2 \) by the parallel transportation along each geodesic. And hence, \(\mathcal {P}\) can be extended naturally to a bundle isomorphism from \(u^*_2T\mathbb {S}^2\otimes T^*\Omega \) to \(u^*_1T\mathbb {S}^2\otimes T^*\Omega \).

Let \(\{e_1,e_2\}\) be a fixed local frame of bundle \(u_1^*T\mathbb {S}^2\) such that \(J(u_1)=\sqrt{-1}\). For each point (xt), we transport parallel this frame to get a moving frame \(\{e_1(s),e_2(s)\}\) along the geodesic \(\gamma _{(x,t)}(s)\), and set \(e_{1,\alpha }=e_\alpha (0)\) and \(e_{2,\alpha }=e_\alpha (1)\) for \(\alpha =1,2\). Under this local frame \(\{e_1(1), e_2(1)\}\) of \(u^*_2 T\mathbb {S}^2\), we still have

$$\begin{aligned} J(u_2)=\sqrt{-1}, \end{aligned}$$

since \(\nabla _{\frac{\partial \gamma }{\partial s}} J(\gamma )=\frac{\partial }{\partial s} J\circ \gamma =0\) and \(J\circ \gamma (0, x,t)=\sqrt{-1}\).

On the other hand, if we denote \(\nabla _l u_l=u^\alpha _{l,i}e_{l,\alpha }\otimes dx^i\) and set \(\phi _l=u^\alpha _{l,i}e_{1,\alpha }\otimes dx^i\), then

$$\begin{aligned} \mathcal {P}\nabla _2 u_2=\mathcal {P}u^\alpha _{2,i} e_{2,\alpha }\otimes dx^i=u^\alpha _{2,i} e_{1,\alpha }\otimes dx^i=\phi _2, \end{aligned}$$

and hence

$$\begin{aligned} \Phi :=\mathcal {P}\nabla _2 u_2-\nabla _1 u_1=(u^\alpha _{2,i}-u^\alpha _{1,i})e_{1,\alpha }\otimes dx^i=\phi _2-\phi _1. \end{aligned}$$

Denote the difference of the two connections by

$$\begin{aligned} B=\nabla _2-\nabla _1=(\left\langle \nabla _2 e_\alpha (1), e_{\beta }(1)\right\rangle -\left\langle \nabla _1 e_\alpha (0), e_{\beta }(0)\right\rangle )e_\beta (0), \end{aligned}$$

which is a tensor. The following estimates for the difference of connections is essential to control the energy \(\int _{\Omega }|\Phi |^2dx\) in the proof of the uniqueness, whose proof can be found in [44].

Lemma B.2

The exists constant C independing on \(u_1\) and \(u_2\), such that the following estimates hold true.

  1. 1.

    \(|B_t|=|\nabla _{2,t}-\nabla _{1,t}|\le C(|\nabla _t u_1|+|\nabla _t u_2|)d(u_1,u_2)\),

  2. 2.

    \(|B_i|=|\nabla _{2,i}-\nabla _{1,i}|\le C(|\nabla _i u_1|+|\nabla _i u_2|)d(u_1,u_2)\),

where \(i=1,2,3\). Moreover, for any \(i,k=1,2,3\), we have

$$\begin{aligned} |(\nabla _{2,k}\nabla _{2,i}-\nabla _{1,k}\nabla _{1,i})J_0\phi _{2,i}|\le C_1(|\Phi |+(|\nabla _1^2 u_1|+|\nabla _2^2 u_2|+1)d(u_1,u_2)), \end{aligned}$$

where \(C_1\) depends only on \(\Vert u_1\Vert _{H^3(\Omega )}\) and \(\Vert u_2\Vert _{H^3(\Omega )}\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Wang, Y. Existence and Uniqueness of Local Regular Solution to the Schrödinger Flow from a Bounded Domain in \({\mathbb {R}}^3\) into \({\mathbb {S}}^2\). Commun. Math. Phys. 402, 391–428 (2023). https://doi.org/10.1007/s00220-023-04730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04730-9

Navigation